

Douglas Partners Geotechnics | Environment | Groundwater

Annual Report on Water and Gas Monitoring 2022-2023

Kempsey Landfill Water and Gas Monitoring 638 Crescent Head Road, Kempsey

Prepared for Kempsey Shire Council

> Project 89781.00 August 2023

Document History

Document details

Project No.	89781.00	Document No.	R.003.Rev1			
Document title	Annual Report on	Annual Report on Water and Gas Monitoring 2022-2023				
	Kempsey Landfill Water and Gas Monitoring					
Site address	638 Crescent Hea	d Road, Kempsey				
Report prepared for	Kempsey Shire Co	ouncil				
File name	89781.00.R.003.R	ev1.2022-23 Annual	Report1			

Document status and review

Status	Prepared by	Reviewed by	Date issued	
Revision 0	Sarah Krebs	Chris Bozinovski	25 August 2023	
Revision 1	Sarah Krebs	Chris Bozinovski	31 August 2023	

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Aaron Ferrell, Kempsey Shire Council
Revision 1	1	0	Aaron Ferrell, Kempsey Shire Council

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Douglas Partners acknowledges Australia's First Peoples as the Traditional Owners of the Land and Sea on which we operate. We pay our respects to Elders past and present and to all Aboriginal and Torres Strait Islander peoples across the many communities in which we live, visit and work. We recognise and respect their ongoing cultural and spiritual connection to Country.

	Signature	Date
Author	Jarah Kreks	31 August 2023
Reviewer	C. Bozinlii	31 August 2023

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 2, 32 Geebung Drive Port Macquarie NSW 2444 PO Box 5463 Port Macquarie NSW 2444 Phone (02) 6581 5992

Table of Contents

			Page
1.	Intro	oduction	1
	1.1	Overview	1
	1.2	Background and Objectives	1
	1.3	Scope of Work	1
2.	Site	Identification	2
3.	Envii	ironmental Setting (ERM 2020)	3
	3.1	Topography	
	3.2	Hydrology	3
	3.3	Hydrogeology	3
	3.4	Geology	4
4.	Site	History and Use	4
5.	Site	Specific Trigger Levels	4
6.		d Work Methods	
•	6.1	Overview and Schedule	
	6.2	Groundwater	6
		6.2.1 Groundwater Monitoring Locations	
		6.2.2 Groundwater Well Gauging, Purging and Sampling	
		6.2.3 Groundwater Analysis	
	6.3	Surface Water	
		6.3.1 Surface Water Monitoring Locations	
		6.3.3 Surface Water Analysis	
	6.4	Gas Monitoring	
	0.4	6.4.1 Monitoring Wells	
		6.4.2 Landfill Surface and Enclosed Spaces (Buildings)	
	6.5	Quality Assurance / Quality Control	10
		6.5.1 Field QA/QC	
		6.5.2 Laboratory QA/QC	10
7.	Field	d Work Results	10
	7.1	Groundwater Level Monitoring	10
	7.2	Groundwater Quality Monitoring – Field	11
	7.3	Surface Water Quality Monitoring - Field	11
	7.4	Gas Monitoring	
		7.4.1 Monitoring Wells	
		7.4.2 Landfill Surface	12

		7.4.3 Bui	ildings (Enclosed Spaces)	14
8.	Disc	ussion		14
	8.1	Groundwat	er	14
		8.1.1 Fie	eld Observations	14
		8.1.2 Gro	oundwater Analytical Results	14
	8.2	Surface Wa	ater	15
		8.2.1 Fie	ld Observations	15
		8.2.2 Su	rface Water Analytical Results	15
	8.3	Gas Monito	oring	17
9.	Cond	clusion		18
	9.1	Groundwat	er	18
	9.2	Surface Wa	ater	19
	9.3	Gas Monito	pring	19
10.	Reco	mmendation	ns	20
11.	Refe	rences		20
12.	Limit	ations		21

Appendix A: Drawing 1 – Test Location Plan

Appendix B: About this Report

Appendix C: Quality Assurance / Quality Control Report

Chain of Custody Sheets (Field and Despatch)

Laboratory Sample Receipt

Appendix D: Tabulated Field Work Results:

Table D1: Groundwater Levels (2022 - 2023)

Table D2: Groundwater and Surface Water Field Parameters (2022 – 2023)

Table D3: Gas Monitoring – Groundwater Wells 92022 – 2023)

Table D4: Methane Monitoring – Surface (2022 – 2023) Table D5: Methane Monitoring – Buildings (2022 – 2023)

Appendix E: Laboratory Report Sheets

Appendix F: Tabulated Laboratory Results:

Table F1 – Field and Laboratory Results for Groundwater – October 2022 – Q1 Table F2 – Field and Laboratory Results for Surface Water - October 2022 – Q1 Table F3 – Field and Laboratory Results for Surface Water – January 2023 – Q2

Table F4 – Field and Laboratory Results for Additional Surface Water Monitoring Round –

March 2023

Table F5 - Field and Laboratory Results for Groundwater – April 2023 – Q3
Table F6 – Field and Laboratory Results for Surface Water - April 2023 – Q3
Table F7 – Field and Laboratory Results for Surface Water – July 2023 – Q4

Appendix G: Graphed Historical Data

Figure G1: Rainfall Data and Groundwater Levels 2020 – 2023 Figure G2: Groundwater Chemistry (Ammonia and EC) vs Time Figure G3: Groundwater Chemistry (Magnesium and Nitrate) vs Time

Figure G4: Groundwater Chemistry (pH) vs Time

Figure G5: Surface Water Chemistry (Chloride and EC) vs Time Figure G6: Surface Water Chemistry (Iron and Magnesium) vs Time Figure G7: Surface Water Chemistry (Manganese and Nitrate) vs Time Figure G8: Surface Water Chemistry (pH and Potassium) vs Time Figure G9: Surface Water Chemistry (Sodium and Sulfate) vs Time Figure G10: Surface Water Chemistry (TSS and TOC) vs Time

Appendix H: Tabulated Annual Return Data

Table H1: Annual Return Reporting Values for Monitoring Point 1 (BH1) (2022 to 2023)
Table H2: Annual Return Reporting Values for Monitoring Point 2 (BH2) (2022 to 2023)
Table H3: Annual Return Reporting Values for Monitoring Point 3 (BH3) (2022 to 2023)
Table H4: Annual Return Reporting Values for Monitoring Point 4 (S4) (2022 to 2023)
Table H5: Annual Return Reporting Values for Monitoring Point 5 (S5) (2022 to 2023)
Table H6: Annual Return Reporting Values for Monitoring Point 6 (S6) (2022 to 2023)
Table H7: Annual Return Reporting Values for Monitoring Point 7 (S7) (2022 to 2023)
Table H8: Annual Return Reporting Values for Monitoring Point 8 (L8) (2022 to 2023)
Table H9: Annual Return Reporting Values for Monitoring Point 9 (Methane Buildings) (2022 to 2023)

Table H10: Annual Return Reporting Values for Monitoring Point 10 (Methane Surface) (2022 to 2023)

Table H11: Annual Return Reporting Values for Monitoring Point 11 (Methane in Groundwater Bores) (2022 to 2023)

Table H12: Annual Return Reporting Values for Monitoring Point 12 (BH4) (2022 to 2023) Table H13: Annual Return Reporting Values for Monitoring Point 14 (BH01-2) (2022 to 2023)

Annual Report on Water and Gas Monitoring 2022-2023 Kempsey Landfill Water and Gas Monitoring 638 Crescent Head Road, Kempsey

1. Introduction

1.1 Overview

This annual report presents the results of groundwater, surface water and gas monitoring for the period October 2022 to July 2023 at the Kempsey Landfill Site located at 638 Crescent Head Road, South Kempsey New South Wales (NSW). Monitoring was commissioned by Kempsey Shire Council (KSC).

The Kempsey landfill site is located at 638 Crescent Head Road, South Kempsey (Part Lot 7008 DP96356).

The site is licensed by the Environment Protection Authority under Environmental Protection Licence (EPL) 6269. The EPL notice specifies requirements for surface water, groundwater, leachate and gas monitoring including test locations, analytes and threshold concentrations. Monitoring was conducted with reference to EPL 6269 requirements.

The site is located within undeveloped land adjacent to the Maria National Park approximately 10 km southwest of Kempsey.

1.2 Background and Objectives

The KSC Environmental Protection Licence (EPL 6269) authorises the scheduled activity of Waste Disposal (application to land) at the Kempsey Landfill site on Crescent Head Road South Kempsey. KSC is required to undertake compliance monitoring as part of the licence conditions that allow the site to operate.

Conditions M2.2 and M2.3 of the EPL outline air emissions monitoring and water/ leachate monitoring requirements. Conditions M2.4, M2.5 and M2.6 of the EPL outline the groundwater, surface water and leachate reporting requirements.

The objective of this report is to meet the ELP requirements related to groundwater, surface water and gas monitoring for the 2022-2023 reporting period, specifically conditions M2.2, M2.3, M2.4, M2.5 and M2.6.

1.3 Scope of Work

This report presents the results of the groundwater, surface water / leachate and gas monitoring program undertaken from October 2022 to July 2023. The following work tasks were undertaken:

- Q1 First quarterly monitoring event, September 2022;
 - o Manual water level gauging, purging and sampling of five groundwater monitoring wells;
 - o Sampling of three surface water locations, one leachate location and one effluent location;
 - o Methane gas monitoring within the five groundwater bores, landfill surface and enclosed spaces within the site.
- Q2 Second quarterly monitoring event, January 2023;
 - Manual water level gauging of five groundwater monitoring wells;
 - o Sampling of three surface water locations, one leachate location and one effluent location;
 - o Methane gas monitoring within the five groundwater bores, landfill surface and enclosed spaces within the site.
- Q3 Third quarterly monitoring event, April 2023;
 - o Manual water level gauging, purging and sampling of five groundwater monitoring wells;
 - o Sampling of three surface water locations, one leachate location and one effluent location;
 - o Methane gas monitoring within the five groundwater bores, landfill surface and enclosed spaces within the site.
- Q4 Fourth quarterly monitoring event, July 2023;
 - o Manual water level gauging of five groundwater monitoring wells;
 - o Sampling of three surface water locations, one leachate location and one effluent location;
 - o Methane gas monitoring within the five groundwater bores, landfill surface and enclosed spaces within the site.
- Assessment of the results of monitoring against the EPL 6269;
- Preparation of this report.

KSC requested additional sampling and analysis on surface waters from locations S7 and L8 which was conducted on 30 March 2023, approximately 27 days before Q3 sampling.

The locations of the groundwater / gas monitoring wells, surface water and gas monitoring area are shown on Drawing 1 in Appendix A.

2. Site Identification

Site Address	638 Crescent Head Road, Kempsey NSW 2440
Legal Description	Part Lot 7008 DP96356
Area	Approx. 12 Ha
Zoning	1(a1) Rural "A1" Zone
Elevation	Approx. 16 to 50 m AHD
Local Council Area	Kempsey Shire Council
Current Use	Landfill and waste management facility
Surrounding Uses	Crown Reserve

3. Environmental Setting (ERM 2020)

3.1 Topography

The original topography of the site has been disrupted by the former quarry operation and by the landfill operation. Despite this, the original landform is evident to some degree. The site is located on the slope of a ridge with southwest aspect. The highest natural elevation at the site is on the ridge in the northern portion of the site at approximately 49 m Australian Height Datum.

3.2 Hydrology

The landform of the site slopes to the southwest providing natural drainage to the lower end of the site, in the vicinity of the sediment retention dam (S7). A small, unnamed ephemeral watercourse is located adjacent to the western portion of the site, upon which the surface water monitoring location S4, S5 and S6 are located (see Drawing 1 in Appendix A). The unnamed ephemeral watercourse adjacent to the west of the site drainage only has flow during and immediately following high rainfall events. Another first order ephemeral watercourse meets with the unnamed ephemeral watercourse adjacent to the western portion of the site and this watercourse is sourced from within the rural residential area west of the site. The site catchment drains to Reedy Creek approximately two kilometres to the southwest of the site. Reedy Creek flows directly into the Maria River approximately five kilometres south of the landfill.

Surface water flow from capped areas of the site is directed into a perimeter spoon drain into the sediment retention dam (S7) sediment retention dam prior to being reused at the site (irrigation or dust suppression), evaporated or flowing on from the site to the unnamed ephemeral watercourse during overflow events or via active discharge.

Leachate from the landfill cells is managed within the leachate dam (L8) for on-site irrigation and evaporation.

3.3 Hydrogeology

Previous drilling activities conducted by RCA (2000) encountered the groundwater between 12 m and 17 m below the existing ground surface. RCA (2000) indicated that the groundwater beneath the site is confined by clay and weathered mudstone layers above the groundwater and bedrock below, particularly beneath the southern portion of the site. The groundwater is present in the less weathered mudstone, siltstone and sandstone layers.

Regional groundwater flow direction in the vicinity of the site is generally to the south / south-west, which is the same as the catchment area draining and existing landforms. This is consistent with field observations of the five groundwater monitoring wells (BH1, BH1/02, BH2, BH3 and BH4) at the site conducted over previous reporting periods.

3.4 Geology

Reference to the NSW Seamless Geology dataset, made available by the NSW Government Department of Regional New South Wales the site is underlain by Kempsey Beds which typically comprises sandstone, mudstone, siltstone, and conglomerate.

Reference to the Kempsey 1:100,000 scale Soil Landscape Sheet indicates the site is mapped as comprising residual soils of the Kundabung landscape.

The Kundabung landscape is characterised by "undulating rises with broad crests, extensive foot slopes and drainage plains on Permian mudstones of the Kempsey and Beechwood beds". The soils within this landscape are characterised as "water erosion hazard, foundation hazards, shallow soils, erodible, sodic, acidic soils with low wet bearing strength and low permeability".

Reference to the NSW Acid Sulfate Soil Risk Map indicates the site is not mapped within an acid sulfate soils area.

4. Site History and Use

The site was originally a clay quarry, in 1985 it was granted Development Consent to become a landfill and occupy approximately four hectares. Further Development Consents were granted in August of 2002 for an additional 0.5 hectares and December of 2003 for up to a total of 12 hectares.

The existing Kempsey landfill site is located within Lot 7008 DP96356, 638 Crescent Head Road, South Kempsey. The landfill area is generally positioned centrally within the lot and is surrounded by undeveloped rural land and mature trees as can be seen in Figure 1 below.

The Site consists of an operational landfill area, a completed landfill area and an area designated for future use. The current on-site buildings consist of a machinery shed, a pump shed, a heavy vehicle weighbridge and office, truck wheel wash, a waste transfer station and an area for recyclables materials and off-site processing materials.

5. Site Specific Trigger Levels

The site specific trigger levels applied for the ground and surface water monitoring are provided in the EPL 6269 and are shown in Table 1 below.

Table 1: EPL 6269 Site Specific Trigger Levels

Pollutant	Units of measure	Groundwater Trigger Level	Surface Water Trigger Level
Ammonia	mg/L	0.9	0.9
Conductivity	μS/cm	1065	1065
Magnesium	mg/L	10.05	10.05
Nitrate	mg/L	0.7	0.7
рН	pH	6.5-8.0	6.5-8.0
Calcium	mg/L	NA	2.05
Chloride	mg/L	NA	54.49
Iron	mg/L	NA	1.84
Manganese	mg/L	NA	1.9
Sodium	mg/L	NA	34
Sulfate	mg/L	NA	3.1
TOC	mg/L	NA	33.1
Total Phenolics	mg/L	NA	0.32
Alkalinity (as CaCo3)	mg/L	NA	12.283
Potassium	mg/L	NA	2.282
TSS	mg/L	NA	33.415
DO	mg/L	NA	12.057

The criteria for the surface and ground gas monitoring are in reference to the Environmental Guidelines for Solid waste landfills (NSW EPA, 2016) as follows:

- Subsurface methane criteria 1 % (v/v); and
- Surface methane 500 ppm.

6. Field Work Methods

6.1 Overview and Schedule

Groundwater, surface water and gas monitoring was conducted with reference to the EPL as presented in Table 2 below.

Table 2: Quarterly Monitoring Tasks

Quarterly Round	Sampling Date	Description	Comment	
	26 Santambar 2022	Groundwater gauging	No rainfall on the day of monitoring.	
Q1 1st Quarter	26 September 2022	Groundwater sampling and laboratory analysis	Approximately 110 mm of rainfall in the preceding week.	
monitoring event	27 September 2022	Surface water sampling and laboratory analysis	Approximately 0.2 mm on the day of	
	27 September 2022	Methane gas monitoring (building, bores and surface)	monitoring.	
Q2 2nd Quarter		Surface water sampling and laboratory analysis	No rainfall on the day of monitoring.	
monitoring	10 January 2023	Groundwater gauging	Approximately 57.6 mm of rainfall in the	
event		Methane gas monitoring (building, bores and surface)	preceding week.	
O3	26 April 2022	Surface water sampling and laboratory analysis	Approximately 0.4 mm of rainfall on the day	
3rd Quarter monitoring	26 April 2023	Methane gas monitoring (building, bores and surface)	of monitoring. Approximately 3 mm rainfall in the preceding week.	
event	27 April 2023	Groundwater gauging Groundwater sampling and laboratory analysis	Approximately 1.4 mm of rainfall on the day of monitoring.	
Q4	4.1.1.0000	Groundwater gauging	Approximately 3.6 mm rainfall on the day	
4 th Quarter	4 July 2023	Methane gas monitoring (building, bores and surface)	of monitoring. No rainfall recorded in the preceding week.	
monitoring event	5 July 2023	Surface water sampling and laboratory analysis	Approximately 3.2 mm rainfall on the day of monitoring.	

6.2 Groundwater

6.2.1 Groundwater Monitoring Locations

A summary of groundwater bore/well monitoring locations is presented below:

- BH1 (EPL Point 1):
 - o Located up-hydraulic gradient of the site and is intended to be representative of background groundwater conditions.
- BH2 (EPL Point 2):
 - Located down gradient and to the south of the landfill, near the sediment retention dam.
- BH3 (EPL Point 3):
 - o Located on the western side of the site within the landfill fence-line, near an existing storm water spoon drain.
- BH4 (EPL Point 12):
 - o The western-most monitoring well outside the landfill fence-line, located between the sediment retention pond and leachate dam.
- BH1-02 (EPL Point 14):
 - Located to the south of the landfill boundary.

Refer to Drawing 1 in Appendix A for approximate well locations.

6.2.2 Groundwater Well Gauging, Purging and Sampling

Prior to purging and sampling of wells (BH1, BH1/02, BH2, BH3 and BH4), an oil-water interface meter was used to measure the depth to groundwater and assess the possible presence of a floating product within each well. Refer to Drawing 1 in Appendix A for approximate well locations.

Prior to sampling, the wells were purged using a MP10 MicroPurge low-flow water sampler or Clearview disposal single-check valve bailers until steady pH, EC, turbidity and temperature readings were achieved. Field parameters were measured using a calibrated portable meter.

The groundwater level was allowed to recover from the effects of purging prior to sampling. Groundwater samples were collected under strict QA/QC protocols and placed directly into laboratory prepared containers for analysis. The samples were delivered to the laboratory within the recommended holding times for analysis.

The headspace at the top of each well was also screened for the presence of volatile organic compounds (VOCs) using a calibrated Photo-ionisation detector (PID).

The process of obtaining samples and their transportation, storage and delivery to laboratories for analysis was documented on a DP standard Chain-of-Custody (COC) form. Copies of completed forms are contained in Appendix F.

Gauging, groundwater purging and sampling were undertaken by a geo-environmental engineer from DP.

6.2.3 Groundwater Analysis

Laboratory testing for groundwater samples was undertaken by Envirolab Services Pty Ltd (Envirolab), a National Association of Testing Authorities, Australia (NATA) registered laboratory. The analytical methods used are shown on the laboratory sheets in Appendix E.

Groundwater analysis was undertaken bi-annually (Q1 and Q3) at locations BH1, BH2, BH3, BH4, BH01-2 for the following parameters as per the EPL:

- Ammonia, Electrical Conductivity, Magnesium, Nitrate, pH, Standing water level, Temperature;
- Monitoring for dissolved oxygen (DO) was also conducted, together with screening of groundwater headspace for volatile organic compounds using a Photo-ionisation detector (PID).

6.3 Surface Water

6.3.1 Surface Water Monitoring Locations

A summary of surface water sampling locations is presented below:

- S4 (EPL Point 4):
 - Located upstream from the site and is considered to be representative of background surface water conditions.

- S5 (EPL Point 5):
 - o Located directly downstream from the site and sediment retention dam overflow. S5 is also located downstream from input from the first order stream that meets with the unnamed ephemeral watercourse located adjacent to the western portion of the site.
- S6 (EPL Point 6):
 - o Located further downstream of the site than S5.
- S7 (EPL Point 7):
 - o Located at the outlet of the site sediment retention pond.
- L8 (EPL Point 8):
 - o Located within the leachate dam and utilised to monitor the composition of leachate and allow comparisons with the other surface water locations on and offsite, to assess potential impacts associated with the operation of the landfill.

Refer to Drawing 1 in Appendix A for approximate sampling locations.

6.3.2 Surface Water Sampling

Surface water samples (S4, S5, S6, S7 and S8) were collected using a long-handled 'swing sampler', directly into new laboratory prepared sampling bottles for each sampling event. Sampling was undertaken to minimise the disturbance of surface water sediments. Refer to Drawing 1 in Appendix A for approximate surface water sample locations.

In-situ measurements of pH, electrical conductivity (EC), oxidation-reduction potential (ORP), dissolved oxygen (DO), turbidity and temperature were taken using a calibrated multi-parameter meter following collection of each surface water sample. The headspace of surface water collected was also screened for the presence of VOCs using a calibrated PID.

Samples were collected under strict QA/QC protocols and delivered to the laboratory within the recommended holding times for analysis. The process of obtaining samples and their transportation, storage and delivery to laboratories for analysis was documented on a DP standard Chain-of-Custody (COC) form. Copies of completed forms are contained in Appendix C.

6.3.3 Surface Water Analysis

Laboratory testing for groundwater and surface water samples was undertaken by Envirolab Services Pty Ltd (Envirolab), a National Association of Testing Authorities, Australia (NATA) registered laboratory. The analytical methods used are shown on the laboratory sheets in Appendix E.

Surface water analysis was undertaken quarterly (Q1, Q2, Q3 and Q4) at locations S4, S5, S6, S7, L8 for the following parameters as per the EPL:

 Alkalinity, Ammonia, Calcium, Chloride, Electrical Conductivity, Dissolved Oxygen, Fluoride, Iron, Magnesium, Manganese, Nitrate, pH, Potassium, Sodium, Sulfate, Temperature, Total organic carbon, Total Phenolics, Total suspended solids.

6.4 Gas Monitoring

6.4.1 Monitoring Wells

Landfill gas monitoring was carried out in wells BH1, BH1/02, BH2, BH3 and BH4, with reference to DP standard operating procedures and NSW EPA (2020). The monitoring method is described as follows:

- Record the barometric pressure;
- Connect the tube on the calibrated landfill gas analyser (GA5000) to the quick connect gas fitting on the well cap; and
- Set the analyser pump on and record concentrations of methane, carbon dioxide, oxygen, carbon monoxide and hydrogen sulphide, generally at 30 second intervals, until concentrations have generally stabilised.

The general weather conditions and atmospheric pressure were recorded during the monitoring event.

6.4.2 Landfill Surface and Enclosed Spaces (Buildings)

Surface gas monitoring comprised traversing the southern portion of the landfill surface on foot, taking measurements of methane concentrations close to the ground surface and client nominated buildings.

Methane measurements were made within buildings (i.e. Office, Shed 1, Shed 2 and Shed 3) as instructed by the client. It is noted that during this annual reporting period an additional four buildings are present in the north-east corner of the site. These buildings were added to the scope of monitoring during the Q4 round in order to comply with the EPL (i.e. generally each corner, centre, sinks, drains etc as described in Table D5 in Appendix D). Refer to Drawing 1 in Appendix A for approximate building locations.

Surface landfill gas monitoring was carried out in accordance with DP standard operating procedures and (NSW EPA, 2020). The monitoring method is described as follows:

- Methane was measured in the atmosphere approximately 5 cm above the landfill surface;
- Transects were generally conducted at 25 m spacings where accessible and methane was measured at approximately 25 m intervals along each transect;
- Further monitoring was undertaken at client nominated enclosed structures / buildings, as shown in Drawing 1;
- The monitoring was performed on a calm day (where possible) during a period of relatively low and stable atmospheric pressure and where wind speed was estimated less than 10 km/h;
- Measurements were taken either using a Huberg Laser or TDL-500 Laser Methane Detector subject to availability capable of detecting concentrations of methane between 0 and 10,000 ppm;
- The methane detector was calibrated prior to use (undertaken by equipment supplier).

6.5 Quality Assurance / Quality Control

6.5.1 Field QA/QC

Quality assurance and quality control (QA/QC) procedures were adopted throughout the field sampling programme and comprised the following:

- Following standard operating procedures;
- Storage of samples under secure, temperature-controlled conditions;
- Use of chain of custody documentation for the handling, transport and delivery of samples to the selected laboratory.

The overall assessment of QA/QC presented in Appendix C.

6.5.2 Laboratory QA/QC

The NATA accredited chemical laboratory undertook in-house QA/QC procedures involving the routine testing of:

- Reagent blanks;
- Spike recovery analysis;
- Laboratory duplicate analysis;
- Analysis of control standards;
- Calibration standards and blanks;
- Statistical analysis of QC data.

An assessment of the laboratory QA/QC data quality is presented in Appendix C.

7. Field Work Results

7.1 Groundwater Level Monitoring

The results of water level gauging for each monitoring round are shown in Table D1 Appendix D. Historic groundwater levels for the last two years of monitoring are plotted against rainfall (Kempsey Airport) in Figure G1 in Appendix G. It is noted that there was significant rainfall in the 2020-2021 and 2021-2022 monitoring periods (i.e. 2023.4 mm and 1575.8 mm respectfully for a 12 month period), compared to the 2022-2023 monitoring period (985.2 mm).

Prior to 2019 there was a general trend of slowly dropping water levels with the exception of BH1. Previous gauging in BH1 indicated sporadic levels with significant response to rainfall suggesting that the well is compromised and is not providing accurate water levels within the formation, currently the Bore is obstructed and as such groundwater level cannot be accurately monitored at this monitoring point (refer to Table D1 and Figure G1).

Groundwater levels have generally increased over the 2022-2023 reporting period by up to about 0.5m.

Groundwater levels in BH1 continue to be sporadic and are not believed to provide accurate groundwater levels at this location.

Groundwater flow is inferred to be flowing to the southwest which is consistent with the southwest orientated land formation.

7.2 Groundwater Quality Monitoring - Field

The groundwater field parameters measured during purging and sampling for Q1 and Q3 monitoring events are shown in Table D2 Appendix D.

The field parameters indicated the following:

- pH ranging from 5.3 6.7 pH indicating generally neutral to acidic conditions;
- Electrical Conductivity ranging from 0.96 to 2.03 mS/cm indicating generally fresh to brackish conditions;
- Both oxidative and reductive water conditions; and
- Generally minimal to slight turbidity, clear, grey and brown groundwater.

The results of PID screening on headspace at the top of each well also suggested the absence of gross volatile organic compounds (i.e. <1 ppm) as indicated in Tables F1 and F4 in Appendix F.

Observations made during purging and sampling generally indicated the absence of visual or olfactory evidence of gross contamination to groundwater at the locations sampled (i.e. general absence of staining, odours, free product etc). A minor hydrogen sulfide odour was noted in BH2 and BH4 during the Q1 monitoring period, and again in BH2 in the Q3 monitoring round.

Graphed representation of historical field observations (EC and pH) is presented Appendix G.

7.3 Surface Water Quality Monitoring - Field

The surface water field parameters measured during sampling for each monitoring round are shown in Table D2 Appendix D. Additional sampling and testing of location S7 (sediment retention dam) and L8 (leachate dam) was conducted approximately 27 days before Q3 monitoring (i.e. 30 March 2023) at the request of KSC.

The field parameters indicated the following for surface waters (excluding L8 leachate dam):

- pH ranging from 5.4 9.7 pH indicating generally acidic to alkaline conditions;
- Electrical Conductivity ranging from 0.07 to 2.31 mS/cm indicating generally fresh to brackish conditions;
- Generally oxidative water conditions with high dissolved oxygen; and
- A range of slight to moderate turbidity, clear, and brown surface water.

The field parameters for L8 (Leachate Dam) indicated the following:

- pH ranging from 6.8 8.1 pH indicating generally acidic to alkaline conditions;
- Electrical Conductivity ranging from 1.00 to 5.13 mS/cm indicating generally fresh to brackish conditions;
- · Generally oxidative water conditions with high dissolved oxygen; and
- A slight turbidity, orange-brown, red-brown, brown water.

Observations made during surface water sampling generally indicated the absence of visual or olfactory evidence of gross contamination to the surface water bodies at the locations sampled (i.e. general absence of staining, odours, free product etc).

Graphed representation of historical field observations (EC and pH) is presented Appendix G.

7.4 Gas Monitoring

7.4.1 Monitoring Wells

The results of gas monitoring within the monitoring wells are shown in Table D3, Appendix D. It is noted that gas monitoring within wells for event Q2 was not conducted due to equipment malfunction. The results of monitoring in Q1 (26 and 27 September 2022), Q3 (27 April 2023) and Q4 (4 and 5 July 2023) indicated the general absence of methane concentrations within groundwater wells (i.e. <1ppm), which is consistent with gas monitoring in the previous year.

7.4.2 Landfill Surface

The summary results of methane monitoring across the landfill surface are shown in Table D4, Appendix D. The results indicated a total of eight exceedances of the monitoring criteria (500 ppm) in Q1 through to Q4 during the monitoring period October 2022 to July 2023. The approximate locations of the exceedances are shown in Figure 1 below (E1 to E14).

Figure 1: Approximate locations of methane monitoring (Q4)

The results of surface methane monitoring are summarised in Table 3 below.

Table 3: Summary of Methane Monitoring Exceedances - October 2022 to July 2023

			Methane (ppm)			
Location			2022-2023			
			Q1	Q2	Q3	Q4
ID	Easting	Nothing	27/09/2022	10/01/2023	26/04/2023	4/07/2023
E1	488395	6555797	6 - 20	N/A	N/A	N/A
E2	488218	6555940	5 - 10	30 - 120	16 - 65	5 -10
E3	488251	6555889	100 - 550	10 - 60	3 - 10	N/A
E4	488436	6555793	0 - 1	N/A	2 - 4	N/A
E5	488465	6555797	N/A	N/A	N/A	N/A
E6	488478	6555818	0 - 0.4	0 - 5	N/A	N/A
E7	488345	6555919	0 - 1	0 - 1	5 - 9	5 -10
E8	488457	6555765	100 - 585	300 - 550	33 - 204	4000 - 6000
E9	488238	6555908	500 - 9000	20 - 120	5 - 6	40 - 50
E10	488339	6555865	-	60 - 2100	30 - 58	5 - 10
E11	488277	6555839	*	300 - 9000	3 - 4	10 - 20
E12	488327	6555911	*	*	60 - 912	40 - 160
E13	488463	6555796	*	*	*	2500 - 4000
E14	488257	6555892	*	*	*	2000 - 2100

Notes to Table:

Exceedance of 500 ppm criteria

N/A not accessible

^{*} Datapoint found in future monitoring round

The results of surface methane monitoring indicated the presence of localised elevated methane at the following locations; E3, E8, E9, E10, E11, E12, E13 and E14. Surface vegetation generally comprised grasses with some localised bare areas. Additional targeted monitoring of surface methane was conducted within selected bare areas. Monitoring generally suggested that there was no direct correlation between bare vegetation areas and elevated methane concentrations.

In summary, a total of ten exceedances of the surface methane monitoring criteria were observed (three in Q1, three in Q2, one in Q3 and three in Q4).

A number of previous locations containing elevated surface methane concentration were not accessible due to the presence of a fill stockpile (i.e., locations E1, E4, E5 and E6). We understand that the stockpile is temporary and contains natural soils that will be progressively used as day cover for future landfill activities. The fill stockpile may therefore be present over this area for an extended period.

The results of monitoring generally suggests the presence of elevated methane concentrations within the western portion of the monitoring area (in the vicinity of former location E3), and the south eastern portion of the monitoring area (in the vicinity of former location E5).

7.4.3 Buildings (Enclosed Spaces)

The results of methane monitoring within nominated buildings for each event are shown in Table D5, Appendix D. The results indicated the general absence of significant methane concentrations within buildings (i.e. <7.5ppm).

8. Discussion

8.1 Groundwater

8.1.1 Field Observations

The groundwater field parameters measured during purging and sampling for Q2 and Q4 monitoring events are shown in Table D2 Appendix D and were discussed in Section 7.2 above.

Observations made during purging and sampling generally indicated the absence of visual or olfactory evidence of gross contamination to groundwater at the locations sampled (i.e. general absence of staining, odours, free product etc). A minor hydrogen sulfide odour was noted in BH2 and BH4 during the Q1 monitoring round, and again in BH2 in Q3 monitoring round.

During the 2022-2023 annual monitoring period, BH1 was blocked by obstruction and sampling was not able to be completed.

8.1.2 Groundwater Analytical Results

The results of analytical testing of groundwater are included in the laboratory report sheets in Appendix E. The results of testing are summarised in Tables F1 and F4 against the adopted site criteria in Appendix F. Graphical representation of historical analytical results for selected parameters are presented in Appendix G. Laboratory analytical reports are in Appendix E.

A summary of the analytical results, together with comments on EPL criteria exceedances and historical trends are provided in Annual Reporting Tables H1, H2, H3, H12 and H13 in Appendix H.

Exceedances of EPL trigger levels for each bore and quarterly monitoring round are summarised in Table 4 below:

Table 4: Exceedances of the EPL 6269 Tigger Levels - Groundwater

Croundwater Well I D	Analytes Exceeding the EPL Groundwater Trigger Levels			
Groundwater Well I.D	Q1 - September 2022	Q3 - April 2023		
BH01-2	EC, pH, Mg	pH, Mg		
BH1	-	-		
BH2	EC, Mg	pH, Mg		
BH3	EC, pH, Mg	EC, pH, Mg		
BH4	EC, pH, Mg	EC, pH, Mg		

During the October 2022 to July 2023 monitoring period, BH1 was blocked by an obstruction in the groundwater well and sampling was not able to be completed. Groundwater monitoring concentrations were generally within the range of historical data. An elevated nitrate concentration was found in BH3 during the previous annual monitoring round. It is noted that sporadic elevated nitrate concentrations have been observed historically for a number of bores, however, the elevated results were not in subsequent monitoring events (refer to Figure G2 in Appendix G). The previous elevated sporadic nitrate concentrations may therefore be spurious.

8.2 Surface Water

8.2.1 Field Observations

The surface water field parameters measured during sampling for Q1, Q2, Q3 and Q4 monitoring events are shown in Table D2 Appendix D and were discussed in Section 7.3 above.

Observations made during surface water sampling generally indicated the absence of visual or olfactory evidence of gross contamination to the surface water bodies at the locations sampled (i.e. general absence of staining, odours, free product etc).

8.2.2 Surface Water Analytical Results

The results of analytical testing of surface water are included in the laboratory report sheets in Appendix E. The results of testing are summarised in Tables F2, F3, F5 and F6 against the adopted site criteria in Appendix F. Graphical representation of historical analytical results for selected parameters are presented in Appendix G. Laboratory analytical reports are in Appendix E.

A summary of the analytical results, together with comments on EPL criteria exceedances and historical trends are provided in Annual Reporting Tables H4, H5, H6, H7 and H8 in Appendix H.

Exceedances of EPL trigger levels for each location and quarterly monitoring round are summarised in Table 5 below:

Table 5: Exceedances of the EPL 6269 Tigger Levels - Surface Water

Sampling	Analytes Exceeding the Surface Water Trigger Levels					
Location	Q1 - October 2022	Q2 – January 2023	Q3 - April 2023	Q4 – July 2023		
L8 (Leachate Dam)	EC, Fe, Alkalinity (total), Ca, Cl, Mg, K, Na, Sulfate, Ammonia, Nitrate, TOC	pH, Fe, Alkalinity (total), Ca, Cl, Mg, K, Na, Sulphate, Ammonia, TOC, TSS	pH, Fe, Alkalinity (total), Ca, Cl, Mg, K, Na, Sulfate, Ammonia, TOC, TSS	EC, pH, Fe, Alkalinity (total), Ca, Cl, Mg, K, Na, Sulfate, Ammonia, TOC, TSS		
S4	pH, Fe, TSS	*	рН	*		
S 5	Fe, Alkalinity (total), TSS	pH, Fe, Alkalinity (total), Ca, K, Na, Sulfate, Ammonia	pH, Fe, Alkalinity (total), Ca, K, Na, Sulfate, Ammonia	EC, pH, Alkalinity (total), Ca, Cl, Mg, K, Na, Sulfate, Ammonia, TOC		
S6	Fe, Alkalinity (total), TSS	*	pH, Alkalinity (total), Ca, Cl, K, Na, Sulfate, Ammonia	pH, Fe, Alkalinity (total), Ca, Cl, K, Na, Sulfate		
S 7	Fe, Mn, Alkalinity (total), Ca, Cl, K, Na, Sulfate, Ammonia, Nitrate, TOC, TSS	Alkalinity (total), Ca, Cl, K, Na, Sulfate	Alkalinity (total), Ca, Cl, K, Na, Sulfate, Ammonia, TSS	EC, Fe, Alkalinity (total), Ca, Cl, Mg, K, Na, Sulfate, Ammonia, Nitrate, TSS		

Notes to table:

^{*} Sample location was dry

Various exceedances of the EPL trigger levels have been found for surface waters as presented in the table above. As expected, the leachate dam (L8) exceeded the EPL trigger levels consistently during the annual monitoring period. Surface water monitoring concentrations were generally within the range of historical data (refer to Appendix G (graphs) and Appendix H (Annual Return). Some elevated results were found for some parameters as shown on the graphs in Appendix G. For example, elevated Nitrate was found at S7 in the Q4 monitoring event (i.e., within historical range for leachate water – L8). The low water level and elevated turbidity in the sediment dam could account for the elevated nitrate at S7 during this event. Whilst nitrate was historically high at S7, there appears to be no significant environmental impact downgradient as nitrate levels at S5 and S6 (downstream locations) are below EPL trigger levels.

As requested by KSC, additional monitoring was conducted at S7 (sediment retention dam) and L8 (leachate dam) on 30 March 2023, approximately 27 days before Q3 sampling. Water levels at S7 were observed to be elevated during sampling on 30 March 2023. Water levels with S7 were observed to be lower during the Q3 sampling event 27 days later. The results of monitoring of S7 and L8 on 30 March 2023 were commensurate with Q3 monitoring on 26 April 2023. Surface water quality at S5 (downgradient location) in Q3 showed slightly elevated calcium, potassium, sodium, and sulphate. The results from the subsequent monitoring round Q4 in downgradient location S5, however, were commensurate with historical results (i.e. suggesting the absence of significant impacts).

Monitoring of surface waters during any discharge events from the sediment retention dam (i.e., S7) or leachate dam (L8) should be conducted by KSC. There were no discharge monitoring results provided by KSC for the current monitoring period.

Recorded rainfall (Kempsey Airport) for the last two years of monitoring are presented in Figure G1 in Appendix G. It is noted that there was significantly less rainfall in the 2022 – 2023 monitoring period (i.e., 985.2 mm) compared to the 2020-2021 and 2021-2022 monitoring periods (i.e., 2023.4 mm and 1575.8 mm respectfully for a 12-month period). The months which recorded elevated rainfall during the current 2021/2022 monitoring period are presented below:

- October 2022 150 mm;
- January 2023 142.8 mm;
- March 2023 125.4 mm.

8.3 Gas Monitoring

The results of gas monitoring are summarised below:

- Monitoring Wells:
 - o The results of monitoring indicated the general absence of methane concentrations within groundwater wells (i.e. <1ppm). All results were below the acceptance criteria.
- Buildings (Enclosed Spaces):
 - o The results indicated the general absence of significant methane concentrations within buildings. All results were below the acceptance criteria.
- Landfill Surface:

- o In summary, a total of eight exceedances of the surface methane monitoring criteria were observed (two in Q1, three in Q2, none in Q3 and three in Q4);
- o Exceedances were generally found to be localised and not associated with areas with sparse vegetation;
- o Based on a number of quarterly monitoring events, elevated methane concentrations were generally observed within the western portion of the monitoring area (in the vicinity of former location E3), and the southeastern portion of the monitoring area (in the vicinity of former location E5);
- o A number of previous locations containing elevated surface methane concentrations (i.e. locations E1, E4, E5 and E6) were not accessible due to the presence of a temporary fill stockpile.

Surface methane monitoring has indicated some elevated results and localised exceedances.

It is understood that Council conducted localised capping rehabilitation works associated methane exceedance areas E8, E11 and E13, and a perimeter leachate drain (due to erosion). Council indicated that consultants were engaged to remove and install the new perimeter leachate drainage system, and rehabilitate landfill capping and provide aftercare management. Council indicated that the works were constructed in accordance with the regulatory requirements (i.e. NSW EPA Environmental Guidelines, Solid Waste Landfill (2016)). DP were not involved in rehabilitation works at the landfill.

9. Conclusion

9.1 Groundwater

Groundwater monitoring data from the current 2022-2023 reporting period is generally consistent with historical monitoring data, although various parameters continue to be reported outside the EPL defined trigger levels.

Previous assessment by ERM indicated that BH1 is not well connected to the same regional water bearing zone as the other groundwater monitoring locations. This is supported by the observed fluctuating groundwater levels at BH1 previous monitoring events. On this basis ERM indicated that groundwater quality at BH1 should not be compared to the results of other groundwater monitoring locations. In addition to this, an obstruction in BH1 precluded sampling and testing of groundwater at this location. The obstruction may also preclude groundwater sampling at his location in future monitoring events.

Based on the results of historic and current monitoring, landfill operations are unlikely to represent a significant risk to human health or ecological receptors during the current reporting period.

9.2 Surface Water

Surface water monitoring data from the current 2022-2023 reporting period is generally consistent with historical monitoring data, although various parameters continue to be reported outside the EPL defined trigger levels. It is noted that the watercourses adjacent to the site are ephemeral. As a consequence, water quality will vary depending on climatic conditions, the presence of waters and the magnitude of flow within the watercourses. Sampling of surface waters has been conducted from both flowing and stagnant waters within watercourses as indicated in Table D2 in Appendix D. Variable water quality is likely to be present as a result of climatic conditions (i.e. flushing of watercourses and sampling from stagnant ponds within watercourses).

A number of outliers were observed as indicated on the graphs in Appendix G and the Annual Reporting tables in Appendix H. Some results may be spurious or influenced by elevated turbidity as discussed in Section 8.2.2 above. Continual monitoring and interpretation of future results will confirm possible trends and potential impacts where present.

Surface water quality monitoring at S5 (downgradient location) in Q3 showed slightly elevated calcium, potassium, sodium and sulphate parameters. The results from the subsequent monitoring round Q4 in downgradient location S5, however, were commensurate with historical results.

The presence of analytes in downstream surface waters suggest that stormwater runoff from the landfill site is potentially influencing surface water quality when compared to upstream water quality, which is consistent with previous monitoring at the landfill.

The results of historic and current surface water monitoring generally suggest the absence of significant impacts to human health or ecological receptors as a result of landfill operations.

9.3 Gas Monitoring

The results of gas monitoring continue to indicate the general absence of elevated methane concentration within groundwater wells and Buildings (enclosed spaces) monitored within the site.

Surface methane monitoring has indicated some elevated results and localised exceedances. We understand that Council has undertaken some localised capping rehabilitation works associated with methane exceedance locations E11 and E13. Further assessment is recommended to confirm that the rehabilitation measures undertaken by Council are appropriate and have addressed the potential risks associated with elevated methane results. Further monitoring and investigation is also recommended to confirm subsurface conditions and capping within other areas identified to contain methane exceedance in order to confirm possible capping rehabilitation requirements.

Continued surface methane monitoring is recommended in accordance with the EPL. Where possible, areas/locations found to contain previous elevated results should be targeted.

It is noted that stockpiled fill is present over a significant portion of the monitored area. Surface methane monitoring should also be conducted at the perimeter of the stockpile and at the surface where accessible during future quarterly monitoring events. Monitoring should also be conducted following the removal of stockpiled materials from this area.

If additional surface methane monitoring and investigation identifies elevated reproducible results, further remediation/rehabilitation measures may be required to ensure that capping is performing as required. Future rehabilitation works should be conducted in accordance with the EPL and relevant regulatory requirements including validation.

10. Recommendations

The following recommendations are made based on the findings of this report:

- Replace BH1 monitoring well in order to allow a more representative assessment of baseline (upgradient) groundwater conditions;
- KSC conduct a review of current site and surface water management strategies to identify potential
 areas for improvement to minimise the risk of migration and impacts to receiving waters (including
 capacity of dams, drainage systems, irrigation and reuse procedures, discharge procedures and
 catchment/containment design);
- KSC consider a review and amendment of the trigger levels for monitoring based on the historic data set;
- Surface gas monitoring:
 - Continue surface methane monitoring in accordance with the EPL;
 - o Target areas/locations found to contain localised elevated results;
 - o Conduct gas monitoring at the perimeter and surface of the of the stockpile located over the monitored area (during future quarterly monitoring events);
 - o Conduct gas monitoring following the removal of the stockpiled materials from the monitored area;
 - Conduct targeted investigation to assess the presence and condition of capping within areas observed to contain elevated methane concentrations;
 - o Further assessment is recommended to confirm that the capping rehabilitation measures undertaken by Council and have addressed the potential risk associated with elevated methane results.
- KSC ensure that future rehabilitation works are conducted in accordance with the EPL and relevant regulatory requirements including validation;
- Continue monitoring surface water, groundwater, and gas in accordance with the EPL.

11. References

CRC CARE. (2017). Risk-based Management and Remediation Guidance for Benzo(a)pyrene. Technical Report no. 39: Cooperative Research Centre for Contamination Assessment and Remediation of the Environment.

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). Contaminated Sites, Sampling Design Guidelines. NSW Environment Protection Authority.

NSW EPA. (2016). Environmental Guidelines, Solid Waste Landfills, Second Edition, 2016. NSW Environment Protection Authority.

NSW EPA. (2020). Assessment and Management of Hazardous Ground Gases. NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

NSW EPA. (2022). Contaminated Sites, Sampling Design Guidelines. NSW Environment Protection Authority.

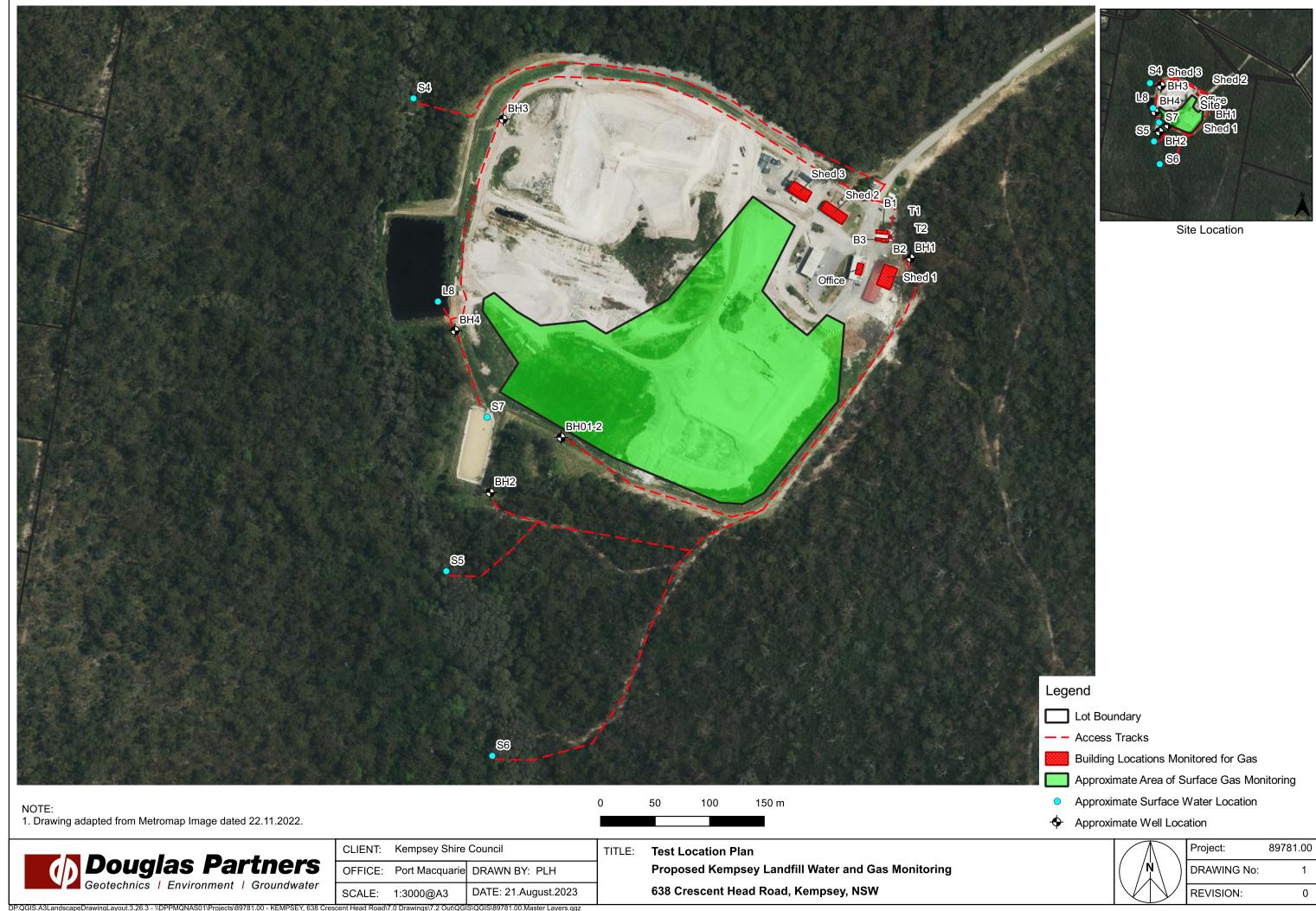
12. Limitations

Douglas Partners Pty Ltd (DP) has prepared this report for this project at 638 Crescent Head Road, Kempsey with reference to DP's proposal PMQ200062.P.001.Rev0 dated 20 August 2020 and acceptance received from Gavin Hughes dated 18 September 2020. The work was carried out under an AS4122 contract dated 13 October 2020. This report is provided for the exclusive use of Kempsey Shire Council for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed. It is noted that DP were not involved in any surface water discharge monitoring, nor capping rehabilitation works conducted by Council at the site.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

The assessment of atypical safety hazards arising from this advice is restricted to the (geotechnical / environmental / groundwater) components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.


This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

Test Location Plan

Appendix B

About This Report

About this Report Douglas Partners O

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report;
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions.
 The potential for this will depend partly on borehole or pit spacing and sampling frequency:
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

Appendix C

Quality Assurance / Quality Control Report Chain of Custody Sheets (Field and Despatch) Laboratory Sample Receipts

Appendix C Quality Assurance Quality Control Report 2022 to 2023 638 Crescent Head Road, Kempsey

C1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table 1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details.

Table 1: Field and Laboratory Quality Control

Item	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation	С
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% 10% of primary samples; <30% RPD	PC
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

The RPD results were all within the acceptable range, with the exception of those indicated in Table 2. The exceedances are not, however, considered to be of concern given that:

- The typically low actual concentrations of the replicate pairs where some RPD exceedances occurred;
- The concentrations with elevated RPD values were found to be below the EPL Trigger Levels (Licence 6269);
- The duplicate samples were taken from surface water locations which have natural variability;

- All concentration values with a high RPD were within the mean of annual return reporting values for the 2022 to 2023 reporting period;
- All other QA/QC parameters met the data quality indicators.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

Table 2: Relative Percentage Difference

			Field ID	S4	D-20220927	RPD	S6	D1/SBK	RPD
			Sampled Date/Time	27/09/2021	27/09/2021	KFD		5/07/2023	
			Sampled Date/Time	27/09/2021	27/09/2021		5/07/2023	5/07/2023	<u> </u>
	T -			1			ı	r	
Method_Type	ChemName	Units							
	Carbonate Alkalinity as CaCO3		5	<5.0	<5.0	0	<5.0	<5.0	0
	Alkalinity (Hydroxide) as CaCO3	mg/l	5	< 5.0	<5.0	0	<5.0	<5.0	0
	Alkalinity (total) as CaCO3	mg/l	5	12.0	6.0	67	24.0	23.0	4
	Alkalinity (Bicarbonate as CaCO3)	mg/l	5	12.0	6.0	67	24.0	23.0	4
	Chloride	mg/l	1	13.0	20.0	42	170.0	170.0	0
	Ionic Balance	%		-8.0	-13.0	48	-6.0	-6.0	0
	Sodium (Filtered)	mg/l	0.5	10.0	9.9	1	76.0	74.0	3
Ion Balance	Sulphate	mg/l	1	2.0	2.0	0	11.0	11.0	0
	Ammonia as N (Filtered)	mg/l	0.005	0.017	0.019	11	0.017	0.73	191
	Fluoride	mg/l	0.1	< 0.1	<0.1	0	<0.1	<0.1	0
	Nitrate (as N) (Filtered)	mg/l	0.005	0.01	0.1	164	< 0.005	< 0.005	0
	TOC	mg/l	1	16.0	16.0	0	18.0	20.0	11
Miscellaneous Inorganics	TSS	mg/l	5	280.0	180.0	43	16.0	28.0	55
	Iron (Filtered)	mg/l	0.01	0.57	0.46	21	0.67	0.76	13
HM in water - dissolved	Manganese (Filtered)	mg/l	0.005	0.007	0.006	15	0.18	0.2	11
	Iron	mg/l	0.01	2.3	2.5	8	2.4	2.5	4
HM in water - total	Manganese	mg/l	0.005	0.029	0.028	4	0.24	0.25	4
	Calcium (Filtered)	mg/l	0.5	<0.5	0.6	18	12.0	13.0	8
	Magnesium (Filtered)	mg/l	0.5	1.0	1.0	0	8.1	8.6	6
Ion Balance	Potassium (Filtered)	mg/l	0.5	0.9	0.9	0	8.9	8.8	1
Total Phenolics in Water Phenolics Total mg/l		0.05	< 0.05	< 0.05	0	< 0.05	< 0.05	0	

C2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite:
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Table 3: Data Quality Indicators

Data Quality Indicator	Method(s) of Achievement
Completeness	Systematic and selected target locations sampled.
	Preparation of chain of custody records.
	Preparation of field groundwater sampling sheets.
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.
	Samples analysed for contaminants of potential concern based on the EPL
	Completion of chain of custody (COC) documentation.
	NATA accredited laboratory results certificates provided by the laboratory.
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.
	Experienced sampler(s) used.
	Use of NATA registered laboratories, with test methods the same or similar between laboratories.
	Satisfactory results for laboratory QC samples.
Representativeness	Target media sampled.
	Sample numbers recovered and analysed are considered to be representative of the target media and complying with DQOs.
	Samples were extracted and analysed within holding times.
	Samples were analysed in accordance with the COC.
Precision	Field staff followed standard operating procedures.
	Satisfactory results for all other field and laboratory QC samples.
Accuracy	Field staff followed standard operating procedures.
	Satisfactory results for all laboratory QC samples.

Based on the above, it is considered that the DQIs have been generally complied with.

C3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

C4.0 References

NEPC. (2013). *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]*. Australian Government Publishing Services Canberra: National Environment Protection Council.

Douglas Partners Pty Ltd

Project No:	89781.00				Client Pro	ject	Name	e:		Kem	psey L	andfill Wa	ater a	and Gas M	onitoring			
Client:	Kempsey	Shire Counc	il		Location:			638 (Cresce	nt He	ad Roa	ad, Kemps	sey					
Project Manag	ger:	Cowan, Jo	el									DP Lab	Rec	eived	Ву:		Date:	
Do samples c	ontain 'pot	ential' HBM	l? Yes □ N	lo x (If YES,	then hand	le, tra	anspo	rt and	store	in acc	cordan	ce with FF	РМ Н	IAZID)				
				Field									For	Despatch	ı to		Notes	12
Sample	Depth	Duplicate	Sample Type	Container Type	ASS			Sa	mpling			Lab 1	Α	Lab 2 ^B	Lab 3 ^c			
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	Е	Зу	D	ate	Т	ime	Date		Date	Date		10	
BH01-2	-		W	Р	-	NYM	JUL	26/9	1/22	01	حده	27/9/22	2					
-BH1	-		-W	P	-			- 1				1				BHI	not sumpled.	
BH2	-		W	Р	-								v					
ВН3	-		W	Р	-					V	/			194				
BH4			W	Р	-0	V	/		/	170	20							
S4		0-20220927	W	Р	-	MUN	1)tec	27/9	122	07	00							
S5	E		W	Р	-	1)	-								
S6	H		W	Р	-													
S7	-		W	Р	-					V								
L8	.=		W	Р	-	U	/		/	12	00	1						
					11			1						2				

A Provide name of Lab 1 Envirolab

rirolab B Provide name of Lab 2

C Provide name of Lab 3

^{*} Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

Project No:	89781.00				Client Pro	oject Nam	e:	Kempsey	Landfill Wate	r and Gas M	onitoring	
Client:	Kempsey	Shire Coun	cil		Location:		638 Cresce	nt Head Ro	ad, Kempse	У		
Project Mana	ger:	Cowan, Jo	el						DP Lab Re	eceived	Ву:	Date:
Do samples of	contain 'pot	ential' HBN	1? Yes □ N	lox (If YES,	, then hand	lle, transpo	ort and store	in accordar	nce with FPM	HAZID)		
				Field					F	or Despatch	n to	Notes
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling		Lab 1 ^A	Lab 2 ^B	Lab 3 ^c	
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	Ву	Date	Time	Date	Date	Date	
-54	-		Bot									7
S5	-		W	ρ		SAL VIC	10/1/2-23	1-55	10/1/23			
20	-							У.				83
S7	-		W	P		SPILLIE	10/1/2023	2:25	10/1/23			507
L8	-		W	ρ		SPULLIU		2-15				741
												4
									-			φ
	-											Management of the Control of the Con
												9
												9 ===

A Provide name of Lab 1 Envirolab

B Provide name of Lab 2

C Provide name of Lab 3

^{*} Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

Project No:	89781.00				Client Pro	ject Name	:	Kempsey	Landfill Wate	r and Gas M	lonitoring		
Client:	Kempsey	Shire Counc	cil	. Toma	Location:	***	638 Cresce	nt Head Ro	ad, Kempsey	/			
Project Mana	ger:	Cowan, Jo	el						DP Lab Re	eceived	Ву:	D	ate:
Do samples o	ontain 'pot	tential' HBN	1? Yes □ N	lox (If YES,	then hand	le, transpor	t and store	in accordar	nce with FPM	HAZID)			
				Field					F	or Despatch	n to	N	lotes
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling	I	Lab 1 ^A	Lab 2 ^B	Lab 3 ^C		
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	By	Date	Time	Date	Date	Date		
BH01-2		PE _	W	Р	-	27/04							
BH1	-		W	Р	- 2	BA							
BH2	\ -		W	Р	_	2714							
ВН3	-		W	Р	-	27/4							
BH4	-		W	Р		27/4							754
S4	-		W	Р		26/04						2	3
S5	=0		W	Р	_	26/04						8	3
S6			W	Р	-	26/04				¥		E (F)	
S7	-		W	Р		16104							
L8	-		W	Р	=	26/04							
												31-8	2-8
1		2										428	429
							A.					300	306
												980243064281-8	980243064292-8
												86	
		*I5			P. 9. 7								

A Provide name of Lab 1 Envirolab

B Provide name of Lab 2

C Provide name of Lab 3

^{*} Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

Project No:	89781.00				Client Pro	oject Nam	e:	Kempsey L	andfill Wate	r and Gas M	onitoring	
Client:	Kempsey	Shire Coun	cil	-	Location	•	638 Cresce	nt Head Roa	ad, Kempsey	/		
Project Manag	ger:	Cowan, Jo	el	Ti			8		DP Lab Re	ceived	Ву:	Date:
Do samples c	ontain 'pot	ential' HBN	1? Yes □ N	No x (If YES,	then hand	lle, transpo	ort and store	in accordan	ce with FPM	HAZID)		
2				Field	ž.				Fo	or Despatch	ı to	Notes
Sample	Depth	Duplicate	Sample Type	Container Type	ASS		Sampling	j ,	Lab 1 A Envirolda	Lab 2 ^B	Lab 3 ^C	
ID	(m)	Sample	S - soil W - water	G - glass P - plastic	Samples	Ву	Date	Time	Date	Date	Date	
-S4	3		W	Р	-	584/02	5/7/23	7:30		-		
S5	-		W	Р	:=	1	İ		/			(F)
S6		01/59K	W	Р	-			-				(9)
S7	-		W	Р	-				/			
L8			W	Р	-	V	V	10:00				3-8
	289			A				1.2				403.
							J.		- 1			980243064033-8
				o	_							254
		Name of the last					44		- 1782			386
				7.5								
										16 - 12		
		45					M N					

^{*} Default storage: glass containers in fridge, plastic containers shelved, ASS in freezer, water samples in fridge

Projec	t No:	89781.00				Suburl	b:	Kempse	э у				T.				b Servi					<u></u>
Projec	t Manager:	Joel Cow					Number:	NC23	1150		Sampl	er: NL	M JEL					et, Chats	swood			
Email:		joel.cov	van/jasc	n.lar	mber	t@dou	glaspartr	ers.co	m.au						Attn:	Sample	receipt					
Turna	round time:	✓ Standa	rd 📗	72 hou			24 ho		Same da						<u> </u>			. 1.4			LA LIAZID\	
	Storage: 🗌 Fr		reezer	✓ Es	ky [Shelf	Do samp	les co	ntain '	potent	ial' HBI	VI? <u>✓</u>	No Yes	(If	YES, ther	handle,	transpor	t and stor	re in accorda	ance with FPI	M HAZID)	
	_					Sample	Container						Analytes									
	Sar	nple ID			ğ	Туре	Туре	Gro	oundwa	ater			Su	rface V	Vater							
Lab ID	Location / Other ID				Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Ammonia	Magnesium (dissolved)	Nitrate	Iron and Manganese (Total and dissolved)	lonic Balance	Ammonia as N	Nitrate as N	Fluoride	Total Phenolics	Total Suspended Solids (TSS)	Total Organic Carbon (TOC)	Notes/	Preservati Requirer	ion/ Addition ments	nal
7	BH01-2			26/	9/22	W		. 🗸	✓	√												
<u> </u>	BH1				1	w											ļ					
2	·BH2					W		✓	/	✓					ļ		ļ		;	CHVIROL	Enviro B	Teb Service 12 Ast ley S od NSV 206
3	ВН3					w		/	/	/	_				ļ		ļ	<u> </u>	ļ			21 60-44 626
4	BH4			,	V	w	·	✓	✓	✓					ļ		ļ			Job No:	3068	20
3	S4			27/	9/22	w					✓	✓	✓	/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/	/	✓		Date Rece Time Rece	eiven: 15	60
b	S5				1	w			<u> </u>		/	✓	✓	/	<u> </u>	/	/	/		Received I	By: 11 LLA	ho
1	S6				T	W					/	✓	/	/	/	/	/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Cooling:	epcepack	
Ŋ,	S7				T	w					✓ .	✓	/	/	/	/	<u> </u>	/		Security: Ir	ntact/Broken/	None
q	L8			,		W					/	✓	~ /	/	/	✓	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	,			
0,1	D-20220927														ļ	<u> </u>	ļ	ļ	00	HOLD		
1 3 3											- 5						ļ		<u> </u>			
			1											<u> </u>	<u></u>			<u> </u>				
Meta	ls to analyse	as abov	e											<u> </u>			RECE					
	ber of sample			1	0		Transp	orted t	o labor	ratory	by:	المريود				Lab F	Ref. No	: 30	6808	. —		
	results to:		Partners												· .	Rece	ived by	i: II	HAV	71200		
Addr			oung Dr, Por			SW 2444	Phone:	65815	992						·			20:	9-22	1000		
	quished by:	JLC					Date:	279	22		Signe	d:				Signe					
	ct No:	89781.0	0			Subu	rb:	Kemp	sey			14				To:		lab Serv	vices			
Proje	ct Manager:	Joel Co	wan											·		Dispa	atch da	ite:	· · · · · · · · · · · · · · · · · · ·			

Proje	ct No:	89781.0	0		Subur	b:	Kemps	ey						To:	Enviro	lab Servi	ices		
	ct Manager:	Joel Cov				Number:				Samp	er:				15 Ash	ely Stre	et, Chats	swood	
Email				on.lambe						_				Attn:	Sampl	e receipt			
	round time:				48 hour				-										
Prior	Storage: 🗌	Fridge	Freezer	✓ Esky	Shelf	Do sam	ples co	ontain '	potent	tial' HB	<u>M? </u>	No Ye	s (If	YES, the	en handle	, transpo	rt and sto	re in accordance with FPM HAZID)	
	Sa	mple ID			Sample Type	Container Type						Analytes							
				ed	1,750	1,700	Gro	oundwa	ater -	ļ		Su ———	rface \	Nater -		1	T = -		
Lab ID	Location / Other ID	Depth from	Depth to	Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Ammonia	Magnesium (dissolved)	Nitrate	Iron and Manganese (Total and dissolved)	lonic Balance	Ammonia as N	Nitrate as N	Fluoride	Total Phenolics	Total Suspended Solids (TSS)	Total Organic Carbon (TOC)	Notes/ Preservation/ Additional Requirements	
	34**	-	-		w					*	✓	✓	1	1	1	1	*		- - -
İ	S5	-	-		w					/	✓	✓	/	/	1	✓	/		
	= 500	<u> </u>	-		w					/	✓	/	1	/	✓	✓	1		
2	S7		-		W					1	✓	✓	1	✓	/	*	1		1
3_	L8	<u> -</u>	-	_	w					/	*	✓		✓	/	/	Y	Enviro	ab Services 2 Ashley St
															<u> </u>	<u> </u>	ļ	El VIROLID Chatswood	1 NSW 2067 2) 9910 6200
																		Job No: 31423	9
_					ļ				_						<u> </u>	<u> </u>		Date Received: [(/	1/23
					<u> </u>	ļ <u>.</u>									<u> </u>	<u> </u>		Time Received: (5)	90 -
								<u> </u>							<u> </u>			Temp Cool Ambient	7°
					<u> </u>							_						Security: Intact/Broke	1/None
										<u> </u>					<u> </u>				
	s to analyse:					Trans	-4004 4-	labarr	-4							RECEI ef. No:		1148 20	
	er of sample results to:		tainer: Partners	Ptv I td		Transpo	ntea (C	iapora	icory b	y:						et. No: ved by		14239	
Addre	_			Macquarie NS	SW 2444	Phone:	658159	92								& Time:		(123 1000)	
	uished by:		g, . u.t			Date:				Signe	J:				Signe				
Projec		89781.00	<u> </u>		Suburl		Kemps	ey		,									
	ct Manager:					rb: Kempsey To: Envirolab Services Dispatch date:													

Projec	t No:	89781.0			Subur		Kemps	еу						To:	Envirol			
				_		Number:				Sampl	er: ৫	Re					t, Chats	swood
Email:						glasparti								Attn:	Sample	receipt		
	round time:					24 ho								L				
Prior S	Storage: 🗌 F	ridge 🔝	Freezer	✓ Esky	Shelf	Do sam	ples co	intain '	potent	iai, HR	M.S.	NoYe	s(lf.	¥ES _r the	n handle	-transpor	t-and-sto	re-in-accordance with-FPM-HAZID)
	Sar	mpie ID			Sample				_			Analytes			-			•
	<u></u>			- pa	Туре	Туре	Gre	oundwa	ater			Su	rface \	Vater				•
Lab	——			<u>E</u>						ed)	=					ъ	_PC	Notes/ Preservation/ Additional
ID	Location / Other			Date Samp	S - soil W - water M - Material	G - glass P - plastic	Ammonia	Magnesium (dissolved)	Nitrate	Iron and Manganese (Total and dissolved)	lonic Balance	Ammonia as N	Nitrate as N	Fluoride	Total Phenolics	Total Suspended Solids (TSS)	Total Organic Carbor (TOC)	Requirements
1-	S7	_		30/3	w	6/10				4	1	✓	1	1	1	\	√	
7	L8			30/3	w	GIP				4	✓	√	V	1	1	√	1	
							-			-								
							_											
			_															
						_			_								_	
																		319997
Metals	to analyse:	as above	- 												LAB F	RECEI	PT	
	er of sample			2_		Transpo	rted to	labora	atory b	y:	Cou	nser				ef. No:		0.00
	esults to:		Partners		-	<u> </u>				.			_			ed by:		OM I III
Addre	ss:	2/32 Geebu	ing Dr, Port	Macquarie N	SW 2444	Phone:	658159	92								Time:		<u> </u>
		Sock	Course			Date:				Signed	d:				Signe			C000
Projec	t No:	89781.00)		Suburi	b:	Kemps	еу									ab Servi	ces
Projec	t Manager:	Joel Cov	/an													ch dat		

٠_

Projec		89781.00)		Suburi		Kempse	 ∋y						To:	Envirola	ab Servi	ces	
	ct Manager:	Joel Cow			Order I	Number:	NC2	31680	G)	Sampl	er: 59	3Y_			19 Ash	ely Stree	t, Chats	wood
Email		joel.cov	van/jaso	on.lamber	t@dou	glaspartr	ers.co	m.au						Attn:	Sample	receipt		
	round time:					24 ho												
Prior	Storage: 🔲 F	idge 🔲 i	Freezer	☑ Esky	Shelf	Do samp	oles co	ntain ' _l	ootenti	al' HBI	V(? ☑	Vo Ye	s (lf`	YES, the	n handle,	transpor	t and sto	e in accordance with FPM HAZID)
	Sar	nple ID			Sample Type	Container Type			 1			Analytes						
				led	Type	туре	Gro	undwa	iter			Su	rface V	Vater		1	_	
Lab ID	Location / Other ID			Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Ammonia	Magnesium (dissolved)	Nitrate	Iron and Manganese (Total and dissolved)	lonic Balance	Ammonia as N	Nitrate as N	Fluoride	Total Phenolics	Total Suspended Solids (TSS)	Total Organic Carbon (TOC)	Notes/ Preservation/ Additional Requirements
1	L8			26/04/2	w	9				1	✓	V	/	/	/	✓	V	
2	54			26/04/23	w	8				/	√		/	/	/	/	/	
3	55			26/04/23	w	9				1		/	1	/	✓	✓		
ų	56			26/04/23	w	P				\checkmark			/					
5	57			26/04/2	3 W	1				$\sqrt{}$	/	\		_				
					w w						-							En ::: 1 Act : t Chatswood NS : : // Ph: (02) 9910 : : 20 Ob No: 321830
					w								_					Date Received: 27/4/23 Time Received: 153°
					W													Received By: 1/W Comp: Coollymbient 7 Coolling: Ice/Icepack Recurity/ Intagl/Broker 1e
						и												
	letals to analyse: as above							labora	tory by	/: <i>(</i> 0)	ιγ i·ev		_			RECEIL ef. No:		830
		Douglas		Pty Ltd												ed by:	K	.W
Addre		2/32 Geebu	ng Dr, Port	Macquarie NS\		Phone:										Time:	27	14/23
	uished by:					Date: 24				Signed	رير إ- :ا	N			Signe		KW	
<u>Projec</u>		89781.00			Suburb):	Kempse	у			0					Envirola		ces
Projec	t Manager:	Joel Cow	an												Dispat	ch dat	e:	

Projec		89781.0	0		Suburl):	Kemps	еу				<u> </u>		To:	Envirol	ab Servi	ices		
	t Manager:	Joel Cov				Number:			6	Samp	ler: 🧲	13K/191	<u></u>	<u> </u>			et, Chats	boows	
Email				on lamber										Attn:	Sample	e receipt			
	round time:				48 hour			Same da	-					<u> </u>					
Prior	Storage: 🗌 F	ridge 🔔	Freezer	✓ Esky	Shelf	Do sam	oles co	ontain '	potent	ial' HB	M? <u>✓</u>	No Ye	es (If)	YES, the	n handle.	, transpo	rt and sto	re in accordance with FPM HAZID)	
	Sai	mple ID			Sample Type	Container Type				Γ		Analytes							
		<u>-</u>	Ι	led			Gro	oundwa	ater		,	Su ————	rface V	vater	1	Γ			
Lab ID	Location / Other ID			Date Sampled	S - soil W - water M - Material	G - glass P - plastic	Ammonia	Magnesium (dissolved)	Nitrate	Iron and Manganese (Total and dissolved)	lonic Balance	Ammonia as N	Nitrate as N	Fluoride	Total Phenolics	Total Suspended Solids (TSS)	Total Organic Carbon (TOC)	Notes/ Preservation/ Additional Requirements	
1	BH01-2			27/4/2	, w		\	✓	✓										
	BH1				-W														
2	BH2			27/4/2	w														
3	внз	-		77/4/23	w		*	1	1										
4	BH4			17/4/27	w	,	*	✓	√ ⁻		<u> </u>					<u> </u>			
	-54				. W_									·	 				
	\$5				W						<u> </u>	· · ·	\ \ \	4	√	<u> </u>	*		
	_S6				₩					<u> </u>	✓	*	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
	<u>.57</u>				W					<u> </u>		-		_				E igryces.	
	<u>L8</u>				₩					· ·	_<		1		<u> </u>	✓	√	Chatswood MULL 287	
													<u></u>					Ph: (02) 51 22 22000	
																		[- caired: 01/05/22	
																<u> </u>		Time Received: 1030	
	to analyse:					,										RECE		Temp: Clont/Amin:	
	er of sample				_	Transpo	rted to	labora	atory b	y: <u>/ c</u>	VVC.	e v					322		
	results to:		Partners	_ <u></u>		DL -	0=0.4==										بكاتحا:		
Addre		2/32 Geebi	ung Dr, Port	Macquarie NS	W 2444	Phone: 7	658159	192	1 -4	Simas	d				Date &	k IIme	01,6	05/23, 1030	
Projec	uished by:	89781.00	<u> </u>		Suburt					Signe	u. 🛂	<u> </u>			To:	u. S	ab Servi	cos .	
	t No: t Manager:				Junuri	,	Kemps	су	-	-			-			tch dat			
riojet	<u>, manayen.</u>	OUEL COV	vaii												Pisha	con ual	E.		

CHAIN OF CUSTODY DESPATCH SHEET

Proje	ct No:	89781.00		-	Suburi		Kemps							To:	Envirol	ab Serv	ices		
	ct Manager:	Joel Cowa		-		Number:				Samp	ler:	SBK /P(Z	1				et, Chat	swood	į
Email				ah.krebs										Attn:	Sample	e receipt	<u>t</u>		j
Turna	round time:	☑ Standard		72 hour □	48 hour			Same day											j
Prior	Storage: 🗆 Fri	dge 🗆 Fro	eezer	☑ Esky 〔	□ Shelf	Do sam	ples co	ontain '	potent	tial' HB	M?	No 🗆 Yes	(1	f YES, th	en handl	e, transp	ort and st	tore in accordance with f	:
	Sar	mple ID		þ	Sample Type	Container Type	Gro	oundwa				Analytes Su	rface V	Vater			_		
Lab ID	Location / Other ID			Date Sampled	S - soil W - water M - Material	· G - glass P - plastic	Ammonia	Magnesium (dissolved)	Nitrate	Iron and Manganese (Total and dissolved)	lonic Balance	Ammonia as N	Nitrate as N	Fluoride	Total Phenolics	Total Suspended Solids (TSS)	Total Organic Carbon (TOC)	Notes/ Preservation/ Additional Requirements	
	1944			5/7/27	W	P													
1	S5				W	1													
2	S6		-		w		_			1	1	*	✓	✓	~	✓	1		
3	\$7				w	П			-	1	✓	1	✓	√	1	✓	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	virolah Services 12 Ashley St
Ų	L8				w					1	✓	~	✓	1	1	1	1		wood (* * 787 s: (02) £ 3200
5	DV/SCIC			V	W	V				~			/	/				: == D ====coived:	327305
																		Time Received:	617177 * 1000
										_								Pareived ay: As Temp (Cool/Ambie Cooling areillean	nt _
							_											Security: Intaction	
																			_
Metal	s to analyse:	as ahove			J										LAR	RECE	PT		
	s to analyse. per of sample		ainer			Transpo	rted to	labora	atory F							ef. No:			
	results to:	Douglas F		Ptv I td		типэрс	, iou i	- IGDOI	LOIY L	<u> </u>						ved by			
Addr				Macquarie NS	SW 2444	Phone:	658159	992								& Time			
	quished by:	56 ^L	ig Di, FUIL	macquarie IV		Date:		2		Signe	d: <i>l</i> 2				Signe				
	ct No:	89781.00			Subur		Kemps			13.13				_	To:		ab Servi	ices	
	ct Manager:	Joel Cow			1			- ,		•				_		tch da			

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan

Sample Login Details	
Your reference	89781.00, Kempsey
Envirolab Reference	306808
Date Sample Received	28/09/2022
Date Instructions Received	28/09/2022
Date Results Expected to be Reported	05/10/2022

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	10 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Total Phenolicsin Water	Ammonia as N in water	Nitrate as N in water	Fluoride, F	Total Organic Carbon	Total Suspended Solids	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, Cl	lonic Balance	HM in water - dissolved	HM in water - total
BH01-2		✓	✓							✓									
BH02		✓	✓							✓									
BH03		✓	✓							✓									
BH04		✓	✓							✓									
S4	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S6	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S7	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
L8	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
D-20220927	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The '\sigma' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan

Sample Login Details	
Your reference	89781.00, Kempsey
Envirolab Reference	314239
Date Sample Received	11/01/2023
Date Instructions Received	11/01/2023
Date Results Expected to be Reported	18/01/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	3 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	7
Cooling Method	Ice Pack
Sampling Date Provided	Not Provided on the COC

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Total Phenolicsin Water	Ammonia as N in water	Nitrate as N in water	Fluoride, F	Total Organic Carbon	Total Suspended Solids	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, Cl	Ionic Balance	HM in water - dissolved	HM in water - total
S5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S 7	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
L8	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan

Sample Login Details	
Your reference	89781.00, Kempsey
Envirolab Reference	319997
Date Sample Received	31/03/2023
Date Instructions Received	31/03/2023
Date Results Expected to be Reported	11/04/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	2 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments
Nil

Please direct any queries to:

Aileen Hie	Jacinta Hurst				
Phone: 02 9910 6200	Phone: 02 9910 6200				
Fax: 02 9910 6201	Fax: 02 9910 6201				
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au				

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Total Phenolicsin Water	Ammonia as N in water	Nitrate as N in water	Fluoride, F	Total Organic Carbon	Total Suspended Solids	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, Cl	lonic Balance	HM in water - dissolved	HM in water - total
S7	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
L8	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The '√' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Newcastle
Attention	Joel Cowan

Sample Login Details	
Your reference	89781.00 Kempsey
Envirolab Reference	321830
Date Sample Received	27/04/2023
Date Instructions Received	27/04/2023
Date Results Expected to be Reported	04/05/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	2
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Total Phenolicsin Water	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hardness	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, Cl	Ionic Balance	HM in water - total	HM in water - dissolved	Total Suspended Solids	Ammonia as N in water	Nitrate as N in water	Fluoride, F	Total Organic Carbon
L8	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S4	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S6	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S7	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The 'v' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan

Sample Login Details	
Your reference	89781.00, Kempsey
Envirolab Reference	322011
Date Sample Received	01/05/2023
Date Instructions Received	01/05/2023
Date Results Expected to be Reported	08/05/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	4 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	16
Cooling Method	Ice Pack
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst
Phone: 02 9910 6200	Phone: 02 9910 6200
Fax: 02 9910 6201	Fax: 02 9910 6201
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au

Analysis Underway, details on the following page:

Sample ID	Ammonia as N in water	Nitrate as N in water	Cations in water Dissolved
BH01-2	✓	✓	✓
BH2	✓	✓	✓
ВН3	✓	✓	✓
BH4	✓	✓	✓

The 'V' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

SAMPLE RECEIPT ADVICE

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan

Sample Login Details	
Your reference	89781.00, Kempsey
Envirolab Reference	327305
Date Sample Received	06/07/2023
Date Instructions Received	06/07/2023
Date Results Expected to be Reported	13/07/2023

Sample Condition	
Samples received in appropriate condition for analysis	Yes
No. of Samples Provided	5 Water
Turnaround Time Requested	Standard
Temperature on Receipt (°C)	6
Cooling Method	Ice
Sampling Date Provided	YES

Comments	
Nil	

Please direct any queries to:

Aileen Hie	Jacinta Hurst						
Phone: 02 9910 6200	Phone: 02 9910 6200						
Fax: 02 9910 6201	Fax: 02 9910 6201						
Email: ahie@envirolab.com.au	Email: jhurst@envirolab.com.au						

Analysis Underway, details on the following page:

Envirolab Services Pty Ltd

ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

Sample ID	Total Phenolicsin Water	HM in water - total	HM in water - dissolved	Ammonia as N in water	Nitrate as N in water	Fluoride, F	Total Suspended Solids	Total Organic Carbon	Calcium - Dissolved	Potassium - Dissolved	Sodium - Dissolved	Magnesium - Dissolved	Hardness	Hydroxide Alkalinity (OH-) as CaCO3	Bicarbonate Alkalinity as CaCO3	Carbonate Alkalinity as CaCO3	Total Alkalinity as CaCO3	Sulphate, SO4	Chloride, CI	Ionic Balance
S5	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S6	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
S7	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
L8	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓
D1/SBK	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓	✓

The 'v' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

Additional Info

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.

Appendix D

Tabulated Field Work Results:

Table D1: Groundwater Levels During Monitoring Period (2022-2023)

Table D2: Groundwater and Surface Water Field Parameters (2022 - 2023)

Table D3: Gas Monitoring – Groundwater Wells 92022 – 2023)

Table D4: Methane Monitoring - Surface (2022 - 2023)

Table D5: Methane Monitoring – Buildings (2022 – 2023)

Table D1: Groundwater Levels During Monitoring Period (2022-2023)

Well ID	Quarterly Round	Sampling Date	TOC Elevation (mAHD)	Depth to Water (mTOC)	Reduced Water Elevation (mAHD)
BH1		26/09/2022	50.17	11.68	38.49
BH1-2		26/09/2022	29.64	4.53	25.11
BH2	Q1	26/09/2022	25.72	0.90	24.82
BH3		26/09/2022	29.78	4.43	25.35
BH4		26/09/2022	26.35	2.30	24.05
BH1		10/01/2022	50.17	*	*
BH1-2		10/01/2022	29.64	*	*
BH2	Q2	10/01/2022	25.72	*	*
BH3		10/01/2022	29.78	*	*
BH4		10/01/2022	26.35	*	*
BH1		27/04/2023	50.17	N/A	N/A
BH1-2		27/04/2023	29.64	4.96	24.68
BH2	Q3	27/04/2023	25.72	1.26	24.46
BH3		27/04/2023	29.78	4.96	24.82
BH4		27/04/2023	26.35	2.38	23.97
BH1		4/07/2023	50.17	N/A	N/A
BH1-2		4/07/2023	29.64	4.72	24.92
BH2	Q4	4/07/2023	25.72	1.07	24.65
BH3		5/07/2023	29.78	4.59	25.19
BH4		5/07/2023	26.35	2.36	23.99

Notes

N/A - measurement not taken due to obstruction in well

⁻ TOC - Top of Casing

⁻ AHD - Australian Hieght Datum

^{* -} equipment malfunction

Table D2: Groundwater and Surface Water Field Parameters During Monitoring Period (2022-2023)

est Location ID Quarter	Quarterly Round	Sampling	Temp (°C)	На	Eh	EC	EC	Turbidity	DO (ppm)		Comme		r
		Date	/		(ORPmV)	(µS/cm)	(mS/cm)	(NIU)	,	Turbidity	Colour	Odour	Flow
BH1-2		26/09/2022	18.00	5.3	70	1080	1.08	114	2.5	Slight	-	nil	n/a
BH1		26/09/2022								urements Take			
BH2		26/09/2022	18.10	6.7	-97	1640	1.64	66	56.6	High	-	H2S odour	n/a
BH3		26/09/2022	20.90	5.9	-18	2030	2.03	17	5.2	Clear	-	nil	n/a
BH4	Q1	26/09/2022	19.00	6.3	-18	2000	2.00	15	2.1	High		H2S odour	n/a
L8		27/09/2022	19.60	7.8	88	2560	2.56	37	1.6	Slight	Red Brown	nil	still
S4		27/09/2022	15.22	6.4	102	71	0.07	84	9.6	Minimal	Brown	nil	still
S5		27/09/2022	14.40	7.6	80	113	0.11	130	7.8	Slight	Brown	nil	still
S6		27/09/2022	14.50	6.6	122	121	0.12	65	5.6	Slight	Brown	nil	still
S7		27/09/2022	18.00	7.6	34	780	0.78	980	4.6	Very	Pale Brown	nil	still
S4		10/01/2022	-		-	-	-		-	-	-	-	Dry
S5		10/01/2022	24.02	6.7	119	450	0.45	492	4.8	Moderate	Brown	N/A	Still
S6	Q2	10/01/2022	-		-	-	-		-		-	-	Dry
S7		10/01/2022	30.52	9.7	13	2310	2.31	84	9.9	Minimal	Pale Brown	N/A	Still
L8		10/01/2022	29.88	8.1	65	4840	4.84	116	3.5	Slight	Red brown	N/A	Still
BH1-2		27/04/2023	19.33	5.6	53	900	0.90	284	32.1	Moderate	pale brown	nil	-
BH1		27/04/2023						,		urements Take			
BH2		27/04/2023	19.31	6.4	-24	916	0.92	27	22.2	Minimal	clear	H2S odour	-
BH3		27/04/2023	21.00	5.8	35	1120	1.12	24	6.1	Minimal	clear	nil	-
BH4	Q3	27/04/2023	23.50	5.4	100	1110	1.11	285	95.0	Minimal	brown	nil	-
L8		26/04/2023	19.40	6.8	141	1000	1.00	304	8.5	Moderate	brown	nil	still
S4		26/04/2023	18.81	5.4	165	71	0.07	21	2.6	Clear	pale brown	nil	still
S5		26/04/2023	18.76	6.2	126	415	0.42	56	1.5	Minimal	pale brown	nil	still
S6		26/04/2023	19.00	6.2	62	361	0.36	90	1.8	Slight	brown	nil	still
S7		26/04/2023	22.45	8.8	26	402	0.40	1000	7.8	Very	pale brown	nil	still
S4		5/07/2023	-		-		-	•	-	-	-	-	Dry
S5		5/07/2023	12.25	6.6	89	1410	1.41	67	0.9	Minimal	pale brown	nil	Still
S6	Q4	5/07/2023	12.56	6.8	34	617	0.62	314	0.4	Minimal	pale brown	nil	Still
S7		5/07/2023	11.20	7.1	129	1430	1.43	>1000	0.9	Hlgh	pale brown	nil	Still
L8		5/07/2023	13.31	8.1	122	5130	5.13	50	3.3	Moderate	orange brown	nil	Still

Table D3: Gas Monitoring - Groundwater Wells (2022-2023)

						Com	ments		
Well ID	lell ID ~~~~~		Max Methane (ppm)			Max Hydrogen Sulfide (ppm)	Max Carbon Monoxide (ppm)	Weather Conditions	Atmospheric Pressure (Mb)
BH1		26/09/2022	0.00	1.40	17.60	3.00	4.00	Overcast	1011
BH1-2		26/09/2022	0.00	0.10	21.40	3.00	1.00	Overcast	1012
BH2	Q1	26/09/2022	0.00	0.20	21.30	2.00	1.00	Overcast	1013
BH3		26/09/2022	0.00	0.10	20.70	0.00	0.00	Overcast	1014
BH4		26/09/2022	0.10	0.10	20.80	1.00	1.00	Overcast	1011
BH1		10/01/2022	-	-	-	-	-	-	-
BH1-2		10/01/2022	-	-	-	-	-	-	-
BH2	Q2	10/01/2022	-	-	-	-	-	-	-
BH3		10/01/2022	-	-	-	-	-	-	-
BH4		10/01/2022	-	ı	-	-	1	1	-
BH1		27/04/2023	0.10	0.10	21.20	0.00	0.00	overcast/cloudy	1022
BH1-2		27/04/2023	0.10	0.20	21.20	0.00	0.00	overcast/cloudy	1023
BH2	Q3	27/04/2023	0.00	0.10	21.30	0.00	0.00	overcast/cloudy	1022
BH3		27/04/2023	0.00	0.10	20.70	1.00	0.00	overcast/cloudy	1021
BH4		27/04/2023	0.00	0.10	20.90	0.00	0.00	overcast/cloudy	1023
BH1		4/07/2023	0.10	0.10	20.60	0.00	0.00	Overcast	1012
BH1-2		4/07/2023	0.00	0.10	20.90	0.00	1.00	Overcast	1010
BH2	Q4	4/07/2023	0.00	0.30	20.70	0.00	0.00	Overcast	1010
BH3		5/07/2023	0.10	0.10	20.90	0.00	1.00	Overcast	1012
BH4		5/07/2023	0.10	0.10	21.00	0.00	0.00	Sunny	1012
(Crieria (EPL	6269)	10000	NC	NC	NC	NC	NA	NA

Notes

ppm - parts per million

Criteria of Subsurface methane 12500 ppm / 1.25 % (v/v) (EPL 6269)

Notification to the EPA is required within 24 hours of result (>12,500 ppm)

Table D4: Methane Monitoring - Surface (2022-2023)

	Location		Methane (ppm)					
20041011			Q1	Q2	Q3	Q4		
ID	Easting	Nothing	27/09/2022	10/01/2023	26/04/2023	4/07/2023		
E1	488394.92	6555797.29	6 - 20	N/A	N/A	N/A		
E2	488217.71	6555939.69	5 - 10	30 - 120	16 - 65	5 -10		
E3	488250.64	6555889.37	100 - 550	10 - 60	3 - 10	N/A		
E4	488436.10	6555793.23	0 - 1	N/A	2 - 4	N/A		
E5	488465.10	6555797.00	N/A	N/A	N/A	N/A		
E6	488477.86	6555818.46	0 - 0.4	0 - 5	N/A	N/A		
E7	488345.20	6555919.48	0 - 1	0 - 1	5 - 9	5 -10		
E8	488457.42	6555765.02	100 - 585	300 - 550	33 - 204	4000 - 6000		
E9	488238.41	6555908.33	500 - 9000	20 - 120	5 - 6	40 - 50		
E10	488339.44	6555865.27	-	60 - 2100	30 - 58	5 - 10		
E11	488276.75	6555838.58	*	300 - 9000	3 - 4	10 - 20		
E12	488326.70	6555911.00	*	*	60 - 912	40 - 160		
E13	488463.10	6555796.00	*	*	*	2500 - 4000		
E14	488257.40	6555892.00	*	*	*	2000 - 2100		

Notes to table

Methane (CH4) surface gas reading above 500 ppm (NSW EPA, 2016 and the EPL 6269)

N/A not accessible

* Datapoint found in future monitoring round

Table D5: Methane Monitoring - Buildings (2022-2023)

		Methane (ppm)							
Location North cnr		Q1	Q2	Q2 Q3					
		27/09/2022	10/01/2023	26/04/2023	4/07/2023				
		0.2	0.1	2.7	1.4				
	South cnr	0.0	0	2.8	1.5				
	East cnr	0.2	0	3.4	1.8				
Shed 1	West cnr	1.1	0	4.9	2				
	Drain	0.5	0	3.1	1.8				
	Bathroom Sink	0.4	0	4.5	2.0				
	Outside	0.1	0	3.2	2.1				
	North cnr	0.0	N/A	4.4	2.0				
	South cnr	0.1	N/A	3.9	3.6				
05-40	East cnr	0.3	N/A	3.8	1.8				
Shed 2	West cnr	0.2	N/A	4.7	1.8				
	Middle	0.2	N/A	4.3	1.8				
	Entrance	0	N/A	3.9	2.2				
	North cnr	0.1	0	3.2	2.0				
Chad 2	South cnr	0.0	0	3.8	1.8				
Shed 3	East cnr	0.1	0	2.8	1.8				
	West cnr	0.1	0	2.9	2.0				
	North end	7.5	0	4.3	3.6				
	South end	6.5	0	3.3	1.9				
	West end	6	0	3.3	2.3				
Office	East end	6	0	3.3	3.3				
Office	Kitchen Sink	6.5	0	3.1	3.4				
	Drain	6.5	0	3.1	7				
	Bathroom sink	7.5	0	3.2	2				
	Entrance	0.4	0	3.1	2.1				
	North cnr	*	*	*	2.6				
1	South cnr	*	*	*	2.4				
B1 ¹	East cnr	*	*	*	2.3				
	West cnr	*	*	*	2.3				
	North cnr	*	*	*	2.3				
	South cnr	*	*	*	2.4				
B2 ¹	East cnr	*	*	*	2.1				
	West cnr	*	*	*	2.3				
	North cnr	*	*	*	2.2				
	South cnr	*	*	*	2.2				
B3 ¹	East cnr	*	*	*	2.3				
	West cnr	*	*	*	2.1				
	sink	*	*	*	2.2				
T1 ¹	room	*	*	*	2.1				
	sink	*	*	*	2.4				
T2 ¹	room	*	*	*	2.4				
Notes	100111				۷.۵				

Notes

Criteria of Subsurface methane 10000 ppm / 1 % (v/v) (NSW EPA, 2016 and the EPL 6269)

ppm - parts per million N/A not accessible

^{*} Datapoint found in future monitoring round

¹ New building location monitored from Q4 2023 (4/7/2023)

Appendix E

Laboratory Report Sheets

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201

ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 306808

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan
Address	PO Box 5463, Port Macquarie, NSW, 2444

Sample Details	
Your Reference	89781.00, Kempsey
Number of Samples	10 Water
Date samples received	28/09/2022
Date completed instructions received	28/09/2022

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details							
Date results requested by	06/10/2022						
Date of Issue	06/10/2022						
NATA Accreditation Number 2901.	NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *						

Results Approved By

Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager Loren Bardwell, Development Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Total Phenolics in Water						
Our Reference		306808-5	306808-6	306808-7	306808-8	306808-9
Your Reference	UNITS	S4	S5	S6	S7	L8
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Date analysed	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Total Phenolics in Water		
Our Reference		306808-10
Your Reference	UNITS	D-20220927
Date Sampled		27/09/2021
Type of sample		Water
Date extracted	-	04/10/2022
Date analysed	-	04/10/2022
Total Phenolics (as Phenol)	mg/L	<0.05

Miscellaneous Inorganics						
Our Reference		306808-1	306808-2	306808-3	306808-4	306808-5
Your Reference	UNITS	BH01-2	BH02	BH03	BH04	S4
Date Sampled		26/09/2022	26/09/2022	26/09/2022	26/09/2022	27/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Ammonia as N in water	mg/L	0.031	0.077	0.090	0.11	0.017
Nitrate as N in water	mg/L	0.03	0.04	0.01	0.007	0.01
Fluoride, F	mg/L		[NA]	[NA]	[NA]	<0.1
Total Organic Carbon	mg/L		[NA]	[NA]	[NA]	16
Total Suspended Solids	mg/L		[NA]	[NA]	[NA]	280

Miscellaneous Inorganics						
Our Reference		306808-6	306808-7	306808-8	306808-9	306808-10
Your Reference	UNITS	S5	S6	S7	L8	D-20220927
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Ammonia as N in water	mg/L	0.18	0.21	6.8	80	0.019
Nitrate as N in water	mg/L	0.23	0.29	3.9	3.3	0.10
Fluoride, F	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Total Organic Carbon	mg/L	18	20	38	180	16
Total Suspended Solids	mg/L	460	44	450	23	180

Ion Balance						
Our Reference		306808-1	306808-2	306808-3	306808-4	306808-5
Your Reference	UNITS	BH01-2	BH02	ВН03	BH04	S4
Date Sampled		26/09/2022	26/09/2022	26/09/2022	26/09/2022	27/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	28/09/2022
Calcium - Dissolved	mg/L	[NA]	[NA]	[NA]		<0.5
Potassium - Dissolved	mg/L	[NA]	[NA]	[NA]		0.9
Sodium - Dissolved	mg/L	[NA]	[NA]	[NA]		10
Magnesium - Dissolved	mg/L	17	15	33	29	1
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	[NA]	[NA]	[NA]		<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	[NA]	[NA]	[NA]		12
Carbonate Alkalinity as CaCO ₃	mg/L	[NA]	[NA]	[NA]		<5
Total Alkalinity as CaCO₃	mg/L	[NA]	[NA]	[NA]		12
Sulphate, SO4	mg/L	[NA]	[NA]	[NA]		2
Chloride, Cl	mg/L	[NA]	[NA]	[NA]		13
Ionic Balance	%	[NA]	[NA]	[NA]	[NA]	-8.0

Ion Balance						
Our Reference		306808-6	306808-7	306808-8	306808-9	306808-10
Your Reference	UNITS	S5	S6	S7	L8	D-20220927
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	30/09/2022
Date analysed	-	28/09/2022	28/09/2022	28/09/2022	28/09/2022	30/09/2022
Calcium - Dissolved	mg/L	2	2	16	27	0.6
Potassium - Dissolved	mg/L	2	2	14	48	0.9
Sodium - Dissolved	mg/L	13	15	81	280	9.9
Magnesium - Dissolved	mg/L	1	1	6.3	15	1
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	15	16	85	540	6
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	15	16	85	540	6
Sulphate, SO4	mg/L	3	3	23	15	2
Chloride, Cl	mg/L	19	21	130	390	20
Ionic Balance	%	-6.0	-5.0	-6.0	-16	-13

HM in water - dissolved						
Our Reference		306808-5	306808-6	306808-7	306808-8	306808-9
Your Reference	UNITS	S4	S5	S6	S7	L8
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
Date analysed	-	30/09/2022	30/09/2022	30/09/2022	30/09/2022	30/09/2022
Iron-Dissolved	μg/L	570	490	470	560	6,600
Manganese-Dissolved	μg/L	7	24	14	78	260

HM in water - dissolved		
Our Reference		306808-10
Your Reference	UNITS	D-20220927
Date Sampled		27/09/2021
Type of sample		Water
Date prepared	-	30/09/2022
Date analysed	-	30/09/2022
Iron-Dissolved	μg/L	460
Manganese-Dissolved	μg/L	6

HM in water - total						
Our Reference		306808-5	306808-6	306808-7	306808-8	306808-9
Your Reference	UNITS	S4	S5	S6	S7	L8
Date Sampled		27/09/2021	27/09/2021	27/09/2021	27/09/2021	27/09/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Date analysed	-	04/10/2022	04/10/2022	04/10/2022	04/10/2022	04/10/2022
Iron-Total	μg/L	2,300	2,100	1,900	4,700	6,700
Manganese-Total	μg/L	29	38	20	110	280

HM in water - total		
Our Reference		306808-10
Your Reference	UNITS	D-20220927
Date Sampled		27/09/2021
Type of sample		Water
Date prepared	-	04/10/2022
Date analysed	-	04/10/2022
Iron-Total	μg/L	2,500
Manganese-Total	μg/L	28

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CO	QUALITY CONTROL: Total Phenolics in Water					Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			04/10/2022	[NT]		[NT]	[NT]	04/10/2022	[NT]
Date analysed	-			04/10/2022	[NT]		[NT]	[NT]	04/10/2022	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]		[NT]	[NT]	103	[NT]

Envirolab Reference: 306808

Revision No: R00

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics						plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	306808-6
Date prepared	-			28/09/2022	5	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Date analysed	-			28/09/2022	5	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	5	0.017	0.017	0	90	87
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	5	0.01	0.01	0	93	85
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	5	<0.1	<0.1	0	112	104
Total Organic Carbon	mg/L	1	Inorg-079	<1	5	16	16	0	102	96
Total Suspended Solids	mg/L	5	Inorg-019	<5	5	280	290	4	96	[NT]

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	306808-5
Date prepared	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Date analysed	-			28/09/2022	1	28/09/2022	28/09/2022		28/09/2022	28/09/2022
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	5	<0.5	[NT]		90	90
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	5	0.9	[NT]		83	82
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	5	10	[NT]		91	78
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	17	17	0	89	89
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	5	<5	[NT]		[NT]	[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	5	12	[NT]		[NT]	[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	5	<5	[NT]		[NT]	[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	5	12	[NT]		96	[NT]
Sulphate, SO4	mg/L	1	Inorg-081	<1	5	2	2	0	97	[NT]
Chloride, Cl	mg/L	1	Inorg-081	<1	5	13	13	0	101	[NT]
Ionic Balance	%		Inorg-040	[NT]	5	-8.0	[NT]		[NT]	[NT]

QUALI	QUALITY CONTROL: Ion Balance					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	306808-6	
Date prepared	-			[NT]	5	28/09/2022	28/09/2022			28/09/2022	
Date analysed	-			[NT]	5	28/09/2022	28/09/2022			28/09/2022	
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	1	[NT]			[NT]	
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	[NT]		[NT]	[NT]		80	
Chloride, Cl	mg/L	1	Inorg-081	[NT]	[NT]	[NT]	[NT]	[NT]	[NT]	94	

QUALITY CC	QUALITY CONTROL: HM in water - dissolved						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	306808-6	
Date prepared	-			30/09/2022	5	30/09/2022	30/09/2022		30/09/2022	30/09/2022	
Date analysed	-			30/09/2022	5	30/09/2022	30/09/2022		30/09/2022	30/09/2022	
Iron-Dissolved	μg/L	10	Metals-022	<10	5	570	560	2	92	#	
Manganese-Dissolved	μg/L	5	Metals-022	<5	5	7	7	0	92	93	

QUALITY	QUALITY CONTROL: HM in water - total						Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	306808-6	
Date prepared	-			04/10/2022	5	04/10/2022	04/10/2022		04/10/2022	04/10/2022	
Date analysed	-			04/10/2022	5	04/10/2022	04/10/2022		04/10/2022	04/10/2022	
Iron-Total	μg/L	10	Metals-022	<10	5	2300	1900	19	101	#	
Manganese-Total	μg/L	5	Metals-022	<5	5	29	27	7	104	101	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received for sample #5, therefore the unpreserved sample was filtered through $0.45\mu m$ filter at the lab.

Note: there is a possibility some elements may be underestimated.

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

The mass inbalance may be caused by other ions that have not been measured.

Envirolab Reference: 306808 Page | 15 of 15 Revision No: R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 314239

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan, Sarah Krebs
Address	PO Box 5463, Port Macquarie, NSW, 2444

Sample Details	
Your Reference	89781.00, Kempsey
Number of Samples	3 Water
Date samples received	11/01/2023
Date completed instructions received	11/01/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	18/01/2023	
Date of Issue	18/01/2023	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Inorganics Supervisor Loren Bardwell, Development Chemist Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Total Phenolics in Water				
Our Reference		314239-1	314239-2	314239-3
Your Reference	UNITS	S5	S7	L8
Type of sample		Water	Water	Water
Date extracted	-	12/01/2023	12/01/2023	12/01/2023
Date analysed	-	12/01/2023	12/01/2023	12/01/2023
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05

Miscellaneous Inorganics				
Our Reference		314239-1	314239-2	314239-3
Your Reference	UNITS	S5	S7	L8
Type of sample		Water	Water	Water
Date prepared	-	11/01/2023	11/01/2023	11/01/2023
Date analysed	-	11/01/2023	11/01/2023	11/01/2023
Ammonia as N in water	mg/L	3.8	0.027	160
Nitrate as N in water	mg/L	0.26	0.54	0.10
Fluoride, F	mg/L	<0.1	0.2	0.2
Total Organic Carbon	mg/L	28	59	190
Total Suspended Solids	mg/L	1,900	120	75

Ion Balance				
Our Reference		314239-1	314239-2	314239-3
Your Reference	UNITS	S5	S7	L8
Type of sample		Water	Water	Water
Date prepared	-	11/01/2023	11/01/2023	11/01/2023
Date analysed	-	11/01/2023	11/01/2023	11/01/2023
Calcium - Dissolved	mg/L	7.8	41	51
Potassium - Dissolved	mg/L	7.9	29	100
Sodium - Dissolved	mg/L	40	360	550
Magnesium - Dissolved	mg/L	5.2	22	29
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	49	60	1,100
Carbonate Alkalinity as CaCO₃	mg/L	<5	69	<5
Total Alkalinity as CaCO₃	mg/L	49	130	1,100
Sulphate, SO4	mg/L	35	66	23
Chloride, Cl	mg/L	73	640	960
Ionic Balance	%	-16	-4.0	-22

HM in water - dissolved				
Our Reference		314239-1	314239-2	314239-3
Your Reference	UNITS	S5	S7	L8
Type of sample		Water	Water	Water
Date prepared	-	12/01/2023	12/01/2023	12/01/2023
Date analysed	-	12/01/2023	12/01/2023	12/01/2023
Iron-Dissolved	μg/L	570	<10	10,000
Manganese-Dissolved	μg/L	70	<5	460

HM in water - total				
Our Reference		314239-1	314239-2	314239-3
Your Reference	UNITS	S5	S7	L8
Type of sample		Water	Water	Water
Date prepared	-	12/01/2023	12/01/2023	12/01/2023
Date analysed	-	12/01/2023	12/01/2023	12/01/2023
Iron-Total	μg/L	9,800	790	11,000
Manganese-Total	μg/L	350	48	460

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: Total Phenolics in Water						Du	olicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	314239-2
Date extracted	-			12/01/2023	1	12/01/2023	12/01/2023		12/01/2023	12/01/2023
Date analysed	-			12/01/2023	1	12/01/2023	12/01/2023		12/01/2023	12/01/2023
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	103	97

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	314239-2
Date prepared	-			11/01/2023	1	11/01/2023	11/01/2023		11/01/2023	11/01/2023
Date analysed	-			11/01/2023	1	11/01/2023	11/01/2023		11/01/2023	11/01/2023
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	3.8	3.8	0	108	96
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.26	0.26	0	93	99
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	<0.1	<0.1	0	93	[NT]
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	28	28	0	101	[NT]
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	1900	1800	5	95	[NT]

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			11/01/2023	1	11/01/2023	11/01/2023		11/01/2023	
Date analysed	-			11/01/2023	1	11/01/2023	11/01/2023		11/01/2023	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7.8	7.6	3	91	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	7.9	7.9	0	84	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	40	40	0	89	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	5.2	5.1	2	91	
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	49	47	4	[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	49	47	4	97	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	35	34	3	110	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	73	73	0	106	
Ionic Balance	%		Inorg-040	[NT]	1	-16	-15	-6	[NT]	

QUALITY CONTROL: HM in water - dissolved						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			12/01/2023	2	12/01/2023	12/01/2023		12/01/2023	
Date analysed	-			12/01/2023	2	12/01/2023	12/01/2023		12/01/2023	
Iron-Dissolved	μg/L	10	Metals-022	<10	2	<10	<10	0	94	
Manganese-Dissolved	μg/L	5	Metals-022	<5	2	<5	<5	0	97	

QUALITY CONTROL: HM in water - total						Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	314239-2
Date prepared	-			12/01/2023	1	12/01/2023	12/01/2023		12/01/2023	12/01/2023
Date analysed	-			12/01/2023	1	12/01/2023	12/01/2023		12/01/2023	12/01/2023
Iron-Total	μg/L	10	Metals-022	<10	1	9800	9300	5	107	#
Manganese-Total	μg/L	5	Metals-022	<5	1	350	360	3	104	106

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 314239 Page | 14 of 15
Revision No: R00

Report Comments

The mass inbalance in sample #3 may be caused by other ions that have not been measured.

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Envirolab Reference: 314239 Page | 15 of 15

Revision No: R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 319997

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan
Address	PO Box 5463, Port Macquarie, NSW, 2444

Sample Details	
Your Reference	89781.00, Kempsey
Number of Samples	2 Water
Date samples received	31/03/2023
Date completed instructions received	31/03/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	11/04/2023
Date of Issue	11/04/2023
NATA Accreditation Number 2901. T	his document shall not be reproduced except in full.
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Inorganics Supervisor Giovanni Agosti, Group Technical Manager Loren Bardwell, Development Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Total Phenolics in Water			
Our Reference		319997-1	319997-2
Your Reference	UNITS	S7	L8
Date Sampled		30/03/2023	30/03/2023
Type of sample		Water	Water
Date extracted	-	05/04/2023	05/04/2023
Date analysed	-	05/04/2023	05/04/2023
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05

Miscellaneous Inorganics			
Our Reference		319997-1	319997-2
Your Reference	UNITS	S7	L8
Date Sampled		30/03/2023	30/03/2023
Type of sample		Water	Water
Date prepared	-	31/03/2023	31/03/2023
Date analysed	-	31/03/2023	31/03/2023
Ammonia as N in water	mg/L	0.51	71
Nitrate as N in water	mg/L	0.89	1.0
Fluoride, F	mg/L	<0.1	0.1
Total Organic Carbon	mg/L	22	110
Total Suspended Solids	mg/L	380	27

Ion Balance			
Our Reference		319997-1	319997-2
Your Reference	UNITS	S7	L8
Date Sampled		30/03/2023	30/03/2023
Type of sample		Water	Water
Date prepared	-	31/03/2023	31/03/2023
Date analysed	-	31/03/2023	31/03/2023
Calcium - Dissolved	mg/L	19	42
Potassium - Dissolved	mg/L	10	97
Sodium - Dissolved	mg/L	65	380
Magnesium - Dissolved	mg/L	6.2	25
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	39	530
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5
Total Alkalinity as CaCO₃	mg/L	39	530
Sulphate, SO4	mg/L	46	46
Chloride, Cl	mg/L	99	640
Ionic Balance	%	0	-13

Envirolab Reference: 319997 Revision No: R00

Page | 4 of 15

HM in water - dissolved			
Our Reference		319997-1	319997-2
Your Reference	UNITS	S7	L8
Date Sampled		30/03/2023	30/03/2023
Type of sample		Water	Water
Date prepared	-	03/04/2023	03/04/2023
Date analysed	-	03/04/2023	03/04/2023
Iron-Dissolved	μg/L	40	7,400
Manganese-Dissolved	μg/L	67	370

HM in water - total			
Our Reference		319997-1	319997-2
Your Reference	UNITS	S7	L8
Date Sampled		30/03/2023	30/03/2023
Type of sample		Water	Water
Date prepared	-	04/04/2023	04/04/2023
Date analysed	-	04/04/2023	04/04/2023
Iron-Total	μg/L	3,700	6,900
Manganese-Total	μg/L	100	320

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CONTROL: Total Phenolics in Water				Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			05/04/2023	[NT]		[NT]	[NT]	05/04/2023	[NT]
Date analysed	-			05/04/2023	[NT]		[NT]	[NT]	05/04/2023	[NT]
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	[NT]		[NT]	[NT]	101	[NT]

Envirolab Reference: 319997

Revision No: R00

QUALITY CONTROL: Miscellaneous Inorganics						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			31/03/2023	1	31/03/2023	31/03/2023		31/03/2023	
Date analysed	-			31/03/2023	1	31/03/2023	31/03/2023		31/03/2023	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.51	[NT]		106	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.89	[NT]		99	
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	<0.1	[NT]		102	
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	22	[NT]		100	
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	380	380	0	93	[NT]

QUALITY CONTROL: Ion Balance						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			31/03/2023	[NT]		[NT]	[NT]	31/03/2023	
Date analysed	-			31/03/2023	[NT]		[NT]	[NT]	31/03/2023	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	105	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	103	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	88	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	[NT]		[NT]	[NT]	108	
Hydroxide Alkalinity (OH ⁻) as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	[NT]		[NT]	[NT]	99	
Sulphate, SO4	mg/L	1	Inorg-081	<1	[NT]		[NT]	[NT]	118	
Chloride, Cl	mg/L	1	Inorg-081	<1	[NT]		[NT]	[NT]	113	

QUALITY CC		Duplicate			Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W5	[NT]
Date prepared	-			03/04/2023	[NT]		[NT]	[NT]	03/04/2023	
Date analysed	-			03/04/2023	[NT]		[NT]	[NT]	03/04/2023	
Iron-Dissolved	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	87	
Manganese-Dissolved	μg/L	5	Metals-022	<5	[NT]	[NT]	[NT]	[NT]	91	[NT]

QUALITY CONTROL: HM in water - total							Duplicate			Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]	
Date prepared	-			04/04/2023	[NT]		[NT]	[NT]	04/04/2023		
Date analysed	-			04/04/2023	[NT]		[NT]	[NT]	04/04/2023		
Iron-Total	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	106		
Manganese-Total	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	99		

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at

Note: there is a possibility some elements may be underestimated.

Envirolab Reference: 319997 Page | 15 of 15 R00

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 321830

Client Details	
Client	Douglas Partners Newcastle
Attention	Joel Cowan
Address	Box 324 Hunter Region Mail Centre, Newcastle, NSW, 2310

Sample Details	
Your Reference	89781.00 Kempsey
Number of Samples	5 Water
Date samples received	27/04/2023
Date completed instructions received	27/04/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	04/05/2023	
Date of Issue	04/05/2023	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Accredited for compliance with ISO/	IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

Results Approved By

Diego Bigolin, Inorganics Supervisor Loren Bardwell, Development Chemist Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

Total Phenolics in Water						
Our Reference		321830-1	321830-2	321830-3	321830-4	321830-5
Your Reference	UNITS	L8	S4	S5	S6	S7
Date Sampled		26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/04/2023	28/04/2023	28/04/2023	28/04/2023	28/04/2023
Date analysed	-	28/04/2023	28/04/2023	28/04/2023	28/04/2023	28/04/2023
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Ion Balance						
Our Reference		321830-1	321830-2	321830-3	321830-4	321830-5
Your Reference	UNITS	L8	S4	S5	S6	S7
Date Sampled		26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/04/2023	27/04/2023	27/04/2023	27/04/2023	27/04/2023
Date analysed	-	27/04/2023	27/04/2023	27/04/2023	27/04/2023	27/04/2023
Calcium - Dissolved	mg/L	52	1	24	15	28
Potassium - Dissolved	mg/L	110	1	14	9.5	15
Sodium - Dissolved	mg/L	490	14	89	62	94
Magnesium - Dissolved	mg/L	29	2	9.2	8.5	9.6
Hardness	mgCaCO 3 /L	250	11	97	73	110
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	790	7	56	25	62
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	790	7	56	25	62
Sulphate, SO4	mg/L	42	<1	46	30	48
Chloride, Cl	mg/L	820	29	170	130	180
Ionic Balance	%	-15	-4.0	-5.0	-5.0	-4.0

HM in water - total						
Our Reference		321830-1	321830-2	321830-3	321830-4	321830-5
Your Reference	UNITS	L8	S4	S5	S6	S7
Date Sampled		26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	01/05/2023	01/05/2023	01/05/2023	01/05/2023	01/05/2023
Date analysed	-	01/05/2023	01/05/2023	01/05/2023	01/05/2023	01/05/2023
Manganese-Total	μg/L	480	29	120	57	140
Iron-Total	μg/L	7,400	1,200	2,100	1,400	860

HM in water - dissolved									
Our Reference		321830-1	321830-2	321830-3	321830-4	321830-5			
Your Reference	UNITS	L8	S4	S5	S6	S7			
Date Sampled		26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023			
Type of sample		Water	Water	Water	Water	Water			
Date prepared	-	28/04/2023	28/04/2023	28/04/2023	28/04/2023	28/04/2023			
Date analysed	-	28/04/2023	28/04/2023	28/04/2023	28/04/2023	28/04/2023			
Iron-Dissolved	μg/L	7,200	420	260	260	20			
Manganese-Dissolved	μg/L	390	18	83	42	12			

Miscellaneous Inorganics						
Our Reference		321830-1	321830-2	321830-3	321830-4	321830-5
Your Reference	UNITS	L8	S4	S5	S6	S7
Date Sampled		26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/04/2023	27/04/2023	27/04/2023	27/04/2023	27/04/2023
Date analysed	-	27/04/2023	27/04/2023	27/04/2023	27/04/2023	27/04/2023
Total Suspended Solids	mg/L	38	7	19	17	56
Ammonia as N in water	mg/L	94	0.017	0.10	0.006	0.042
Nitrate as N in water	mg/L	0.058	0.098	0.36	0.065	0.63
Fluoride, F	mg/L	0.1	<0.1	<0.1	<0.1	<0.1
Total Organic Carbon	mg/L	150	23	17	14	16

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.

QUALITY CO	QUALITY CONTROL: Total Phenolics in Water						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	321830-2
Date extracted	-			28/04/2023	1	28/04/2023	28/04/2023		28/04/2023	28/04/2023
Date analysed	-			28/04/2023	1	28/04/2023	28/04/2023		28/04/2023	28/04/2023
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	101	94

QUALI	QUALITY CONTROL: Ion Balance								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	321830-2
Date prepared	-			27/04/2023	1	27/04/2023	27/04/2023		27/04/2023	27/04/2023
Date analysed	-			27/04/2023	1	27/04/2023	27/04/2023		27/04/2023	27/04/2023
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	52	52	0	106	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	110	110	0	107	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	490	480	2	88	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	29	29	0	101	
Hardness	mgCaCO 3 /L	3	Metals-020	[NT]	1	250	250	0	[NT]	
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	790	[NT]		[NT]	
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	[NT]		[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	790	[NT]		93	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	42	36	15	114	122
Chloride, Cl	mg/L	1	Inorg-081	<1	1	820	830	1	108	115
Ionic Balance	%		Inorg-040	[NT]	1	-15	[NT]		[NT]	

QUALI	QUALITY CONTROL: Ion Balance								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	5	27/04/2023	27/04/2023			[NT]
Date analysed	-			[NT]	5	27/04/2023	27/04/2023			[NT]
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	28	[NT]			[NT]
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	15	[NT]			[NT]
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	94	[NT]			[NT]
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	5	9.6	[NT]			[NT]
Hardness	mgCaCO 3 /L	3	Metals-020	[NT]	5	110	[NT]			[NT]
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	<5	<5	0		[NT]
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	62	62	0		[NT]
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	<5	<5	0		[NT]
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	5	62	62	0		[NT]
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	5	48	[NT]			[NT]
Chloride, Cl	mg/L	1	Inorg-081	[NT]	5	180	[NT]			[NT]
Ionic Balance	%		Inorg-040	[NT]	5	-4.0	[NT]			[NT]

QUALITY	QUALITY CONTROL: HM in water - total							Duplicate		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date prepared	-			01/05/2023	[NT]		[NT]	[NT]	01/05/2023	
Date analysed	-			01/05/2023	[NT]		[NT]	[NT]	01/05/2023	
Manganese-Total	μg/L	5	Metals-022	<5	[NT]		[NT]	[NT]	108	
Iron-Total	μg/L	10	Metals-022	<10	[NT]		[NT]	[NT]	112	

QUALITY CC	QUALITY CONTROL: HM in water - dissolved							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W7	[NT]	
Date prepared	-			28/04/2023	1	28/04/2023	28/04/2023		28/04/2023		
Date analysed	-			28/04/2023	1	28/04/2023	28/04/2023		28/04/2023		
Iron-Dissolved	μg/L	10	Metals-022	<10	1	7200	7200	0	93		
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	390	400	3	96	[NT]	

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	321830-2
Date prepared	-			27/04/2023	1	27/04/2023	27/04/2023		27/04/2023	27/04/2023
Date analysed	-			27/04/2023	1	27/04/2023	27/04/2023		27/04/2023	27/04/2023
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	38	[NT]		104	[NT]
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	94	94	0	106	90
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.058	0.05	15	107	86
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	0.1	0.2	67	115	111
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	150	150	0	100	[NT]

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics							Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	4	27/04/2023	27/04/2023			[NT]	
Date analysed	-			[NT]	4	27/04/2023	27/04/2023			[NT]	
Total Suspended Solids	mg/L	5	Inorg-019	[NT]	4	17	12	34		[NT]	
Ammonia as N in water	mg/L	0.005	Inorg-057	[NT]	4	0.006	[NT]			[NT]	
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	4	0.065	[NT]			[NT]	
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	4	<0.1	[NT]			[NT]	
Total Organic Carbon	mg/L	1	Inorg-079	[NT]	4	14	[NT]			[NT]	

Envirolab Reference: 321830

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 321830 Page | 14 of 14

Envirolab Services Pty Ltd

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 322011

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan
Address	PO Box 5463, Port Macquarie, NSW, 2444

Sample Details	
Your Reference	89781.00, Kempsey
Number of Samples	4 Water
Date samples received	01/05/2023
Date completed instructions received	01/05/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details						
Date results requested by	08/05/2023					
Date of Issue	08/05/2023					
NATA Accreditation Number 2901. This document shall not be reproduced except in full.						
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *					

Results Approved By

Loren Bardwell, Development Chemist Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Miscellaneous Inorganics	Miscellaneous Inorganics											
Our Reference		322011-1	322011-2	322011-3	322011-4							
Your Reference	UNITS	BH01-2	BH2	ВН3	BH4							
Date Sampled		27/04/2023	27/04/2023	27/04/2023	27/04/2023							
Type of sample		Water	Water	Water	Water							
Date prepared	-	01/05/2023	01/05/2023	01/05/2023	01/05/2023							
Date analysed	-	01/05/2023	01/05/2023	01/05/2023	01/05/2023							
Ammonia as N in water	mg/L	0.024	0.067	0.074	0.095							
Nitrate as N in water	mg/L	0.007	<0.005	<0.005	<0.005							

Cations in water Dissolved					
Our Reference		322011-1	322011-2	322011-3	322011-4
Your Reference	UNITS	BH01-2	BH2	вн3	BH4
Date Sampled		27/04/2023	27/04/2023	27/04/2023	27/04/2023
Type of sample		Water	Water	Water	Water
Date digested	-	02/05/2023	02/05/2023	02/05/2023	02/05/2023
Date analysed	-	02/05/2023	02/05/2023	02/05/2023	02/05/2023
Magnesium - Dissolved	mg/L	18	17	40	31

Method ID	Methodology Summary
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Metals-020	Determination of various metals by ICP-AES.

Envirolab Reference: 322011 Page | 4 of 9

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics						Duplicate			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			01/05/2023	[NT]		[NT]	[NT]	01/05/2023	
Date analysed	-			01/05/2023	[NT]		[NT]	[NT]	01/05/2023	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]		[NT]	[NT]	107	
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]		[NT]	[NT]	102	

Envirolab Reference: 322011

QUALITY CON	QUALITY CONTROL: Cations in water Dissolved					Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			02/05/2023	1	02/05/2023	02/05/2023		02/05/2023	
Date analysed	-			02/05/2023	1	02/05/2023	02/05/2023		02/05/2023	
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	18	18	0	115	

Envirolab Reference: 322011

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 322011

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 322011 Page | 8 of 9

Report Comments

Nutrients

Samples were out of the recommended holding time for this analysis.

Envirolab Reference: 322011 Page | 9 of 9

Envirolab Services Pty Ltd ABN 37 112 535 645

ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 327305

Client Details	
Client	Douglas Partners Pty Ltd (Port Macquarie)
Attention	Joel Cowan
Address	PO Box 5463, Port Macquarie, NSW, 2444

Sample Details	
Your Reference	89781.00, Kempsey
Number of Samples	5 Water
Date samples received	06/07/2023
Date completed instructions received	06/07/2023

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details					
Date results requested by	13/07/2023				
Date of Issue	13/07/2023				
NATA Accreditation Number 2901. This document shall not be reproduced except in full.					
Accredited for compliance with ISC	0/IEC 17025 - Testing. Tests not covered by NATA are denoted with *				

Results Approved By

Diego Bigolin, Inorganics Supervisor Loren Bardwell, Development Chemist Nick Sarlamis, Assistant Operation Manager **Authorised By**

Nancy Zhang, Laboratory Manager

Total Phenolics in Water						
Our Reference		327305-1	327305-2	327305-3	327305-4	327305-5
Your Reference	UNITS	S5	S6	S7	L8	D1/SBK
Date Sampled		05/07/2023	05/07/2023	05/07/2023	05/07/2023	05/07/2023
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	07/07/2023	07/07/2023	07/07/2023	07/07/2023	07/07/2023
Date analysed	-	07/07/2023	07/07/2023	07/07/2023	07/07/2023	07/07/2023
Total Phenolics (as Phenol)	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

HM in water - total						
Our Reference		327305-1	327305-2	327305-3	327305-4	327305-5
Your Reference	UNITS	S5	S6	S7	L8	D1/SBK
Date Sampled		05/07/2023	05/07/2023	05/07/2023	05/07/2023	05/07/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/07/2023	07/07/2023	07/07/2023	07/07/2023	07/07/2023
Date analysed	-	07/07/2023	07/07/2023	07/07/2023	07/07/2023	07/07/2023
Iron-Total	μg/L	1,400	2,400	5,200	9,700	2,500
Manganese-Total	μg/L	260	240	260	650	250

HM in water - dissolved						
Our Reference		327305-1	327305-2	327305-3	327305-4	327305-5
Your Reference	UNITS	S5	S6	S7	L8	D1/SBK
Date Sampled		05/07/2023	05/07/2023	05/07/2023	05/07/2023	05/07/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	10/07/2023	10/07/2023	10/07/2023	10/07/2023	10/07/2023
Date analysed	-	10/07/2023	10/07/2023	10/07/2023	10/07/2023	10/07/2023
Iron-Dissolved	μg/L	260	670	20	8,200	760
Manganese-Dissolved	μg/L	220	180	200	530	200

Miscellaneous Inorganics						
Our Reference		327305-1	327305-2	327305-3	327305-4	327305-5
Your Reference	UNITS	S5	S6	S7	L8	D1/SBK
Date Sampled		05/07/2023	05/07/2023	05/07/2023	05/07/2023	05/07/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/07/2023	07/07/2023	07/07/2023	07/07/2023	07/07/2023
Date analysed	-	07/07/2023	07/07/2023	07/07/2023	07/07/2023	07/07/2023
Ammonia as N in water	mg/L	1.4	0.017	0.91	120	0.73
Nitrate as N in water	mg/L	0.20	<0.005	12	0.37	<0.005
Fluoride, F	mg/L	<0.1	<0.1	0.1	0.2	<0.1
Total Suspended Solids	mg/L	23	16	410	66	28
Total Organic Carbon	mg/L	36	18	16	200	20

Ion Balance						
Our Reference		327305-1	327305-2	327305-3	327305-4	327305-5
Your Reference	UNITS	S5	S6	S7	L8	D1/SBK
Date Sampled		05/07/2023	05/07/2023	05/07/2023	05/07/2023	05/07/2023
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	06/07/2023	06/07/2023	06/07/2023	06/07/2023	06/07/2023
Date analysed	-	06/07/2023	06/07/2023	06/07/2023	06/07/2023	06/07/2023
Calcium - Dissolved	mg/L	32	12	41	55	13
Potassium - Dissolved	mg/L	18	8.9	23	150	8.8
Sodium - Dissolved	mg/L	210	76	190	570	74
Magnesium - Dissolved	mg/L	19	8.1	22	33	8.6
Hardness	mgCaCO 3 /L	160	65	190	270	69
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	53	24	50	1,200	23
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	53	24	50	1,200	23
Sulphate, SO4	mg/L	44	11	120	15	11
Chloride, Cl	mg/L	400	170	300	1,000	170
Ionic Balance	%	-3.0	-6.0	4.0	-22	-6.0

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-019	Suspended Solids - determined gravimetricially by filtration of the sample. The samples are dried at 104+/-5°C.
Inorg-026	Fluoride determined by ion selective electrode (ISE) in accordance with APHA latest edition, 4500-F-C.
Inorg-031	Total Phenolics by segmented flow analyser (in line distillation with colourimetric finish). Solids are extracted in a caustic media prior to analysis.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 15% ie total anions = total cations +/-15%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCl extraction.
Inorg-079	TOC determined using a TOC analyser using the combustion method. Dissolved requires filtering prior to determination. Analysis using APHA latest edition 5310B.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-022	Determination of various metals by ICP-MS.
	Please note for Bromine and Iodine, any forms of these elements that are present are included together in the one result reported for each of these two elements.

QUALITY CO	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			07/07/2023	1	07/07/2023	07/07/2023		07/07/2023	
Date analysed	-			07/07/2023	1	07/07/2023	07/07/2023		07/07/2023	
Total Phenolics (as Phenol)	mg/L	0.05	Inorg-031	<0.05	1	<0.05	<0.05	0	107	

QUALITY		Du	plicate	Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	327305-2
Date prepared	-			10/07/2023	1	07/07/2023	07/07/2023		10/07/2023	10/07/2023
Date analysed	-			10/07/2023	1	07/07/2023	07/07/2023		10/07/2023	10/07/2023
Iron-Total	μg/L	10	Metals-022	<10	1	1400	1400	0	90	#
Manganese-Total	μg/L	5	Metals-022	<5	1	260	260	0	90	#

QUALITY CC		Du	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	327305-2
Date prepared	-			10/07/2023	1	10/07/2023	10/07/2023		10/07/2023	10/07/2023
Date analysed	-			10/07/2023	1	10/07/2023	10/07/2023		10/07/2023	10/07/2023
Iron-Dissolved	μg/L	10	Metals-022	<10	1	260	250	4	90	#
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	220	210	5	89	#

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	327305-2
Date prepared	-			07/07/2023	1	07/07/2023	07/07/2023		07/07/2023	07/07/2023
Date analysed	-			07/07/2023	1	07/07/2023	07/07/2023		07/07/2023	07/07/2023
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	1.4	1.3	7	101	102
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.20	0.21	5	99	111
Fluoride, F	mg/L	0.1	Inorg-026	<0.1	1	<0.1	<0.1	0	100	100
Total Suspended Solids	mg/L	5	Inorg-019	<5	1	23	[NT]		106	[NT]
Total Organic Carbon	mg/L	1	Inorg-079	<1	1	36	35	3	101	112

QUALITY COI	NTROL: Mis	cellaneou	s Inorganics			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	3	07/07/2023	07/07/2023				
Date analysed	-			[NT]	3	07/07/2023	07/07/2023				
Ammonia as N in water	mg/L	0.005	Inorg-057	[NT]	3	0.91	[NT]				
Nitrate as N in water	mg/L	0.005	Inorg-055	[NT]	3	12	[NT]				
Fluoride, F	mg/L	0.1	Inorg-026	[NT]	3	0.1	[NT]				
Total Suspended Solids	mg/L	5	Inorg-019	[NT]	3	410	450	9			
Total Organic Carbon	mg/L	1	Inorg-079	[NT]	3	16	[NT]		[NT]	[NT]	

QUALI	TY CONTRO	L: Ion Ba	lance			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	327305-2	
Date prepared	-			06/07/2023	1	06/07/2023	06/07/2023		06/07/2023	06/07/2023	
Date analysed	-			06/07/2023	1	06/07/2023	06/07/2023		06/07/2023	06/07/2023	
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	32	[NT]		98		
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	18	[NT]		101		
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	210	[NT]		103		
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	19	[NT]		102		
Hardness	mgCaCO 3 /L	3	Metals-020	[NT]	1	160	[NT]		[NT]		
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]		
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	53	51	4	[NT]		
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	<5	0	[NT]		
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	53	51	4	105		
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	44	42	5	103	119	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	400	400	0	112	97	
Ionic Balance	%		Inorg-040	[NT]	1	-3.0	[NT]		[NT]		

QUAL	TY CONTRO	L: Ion Ba	alance			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-			[NT]	3	06/07/2023	06/07/2023			[NT]	
Date analysed	-			[NT]	3	06/07/2023	06/07/2023			[NT]	
Calcium - Dissolved	mg/L	0.5	Metals-020	[NT]	3	41	41	0		[NT]	
Potassium - Dissolved	mg/L	0.5	Metals-020	[NT]	3	23	23	0		[NT]	
Sodium - Dissolved	mg/L	0.5	Metals-020	[NT]	3	190	190	0		[NT]	
Magnesium - Dissolved	mg/L	0.5	Metals-020	[NT]	3	22	22	0		[NT]	
Hardness	mgCaCO 3 /L	3	Metals-020	[NT]	3	190	190	0		[NT]	
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	[NT]	3	<5	[NT]			[NT]	
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	3	50	[NT]			[NT]	
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	[NT]	3	<5	[NT]			[NT]	
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006	[NT]	3	50	[NT]			[NT]	
Sulphate, SO4	mg/L	1	Inorg-081	[NT]	3	120	[NT]			[NT]	
Chloride, Cl	mg/L	1	Inorg-081	[NT]	3	300	[NT]			[NT]	
Ionic Balance	%		Inorg-040	[NT]	3	4.0	[NT]			[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Where matrix spike recoveries fall below the lower limit of the acceptance criteria (e.g. for non-labile or standard Organics <60%), positive result(s) in the parent sample will subsequently have a higher than typical estimated uncertainty (MU estimates supplied on request) and in these circumstances the sample result is likely biased significantly low.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

8 HM in water - total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

8 HM in water - dissolved - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

The mass inbalance may be caused by other ions that have not been measured.

Envirolab Reference: 327305

Revision No: R00

Page | 15 of 15

Appendix F

- Appendix F: Tabulated Laboratory Results:
- Table F1 Field and Laboratory Results for Groundwater October 2022 Q1
- Table F2 Field and Laboratory Results for Surface Water October 2022 Q1
- Table F3 Field and Laboratory Results for Surface Water January 2023 Q2
- Table F4 Field and Laboratory Results for Additional Surface Water Monitoring Round March 2023
 - Table F5 Field and Laboratory Results for Groundwater April 2023 Q3
 - Table F6 Field and Laboratory Results for Surface Water April 2023 Q3
 - Table F7 Field and Laboratory Results for Surface Water July 2023 Q4

Project: Kemspey Landfill Groundwater, Surface Water and Gas Monitoring

Table F1 - Field and Laboratory Results for Groundwater - September 2022 - Q1

			ANZECC	EPL	BH1	BH2	BH3	BH4	BH1-2
Δ.	nalyte	Units	2000 FW	Groundwater	MP1	MP2	MP3	MP12	MP14
Ai	ialyte	Units	95%	Trigger Levels	-	26/09/2022	26/09/2022	26/09/2022	26/09/2022
[95%	Licence 6269					
	Dissolved Oxygen (Filtered)	mg/L			1	56.60	5.20	2.08	2.50
	EC (Field)	μS/cm		1065	-	1640	2030	2000	1080
Field	pH (Field)	pH_Units		6.5 - 8.0	-	6.70	5.90	6.30	5.30
	PID (Top of Well)	ppm			<1	<1	<1	<1	<1
	Temp	°C			1	18.10	20.90	19.00	18.00
Ion Balance	Magnesium (Filtered)	mg/L		10.05	1	15.00	33.00	29.00	17.00
Miscellaneous Inorganics	Ammonia as N	mg/L	0.9	0.9	1	0.08	0.09	0.11	0.03
	Nitrate (as N)	mg/L	0.7	0.7	-	0.04	0.01	0.01	0.03

Notes

Only EPL Trigger Levels exceedances highlighted

Table F2 - Field and Laboratory Results for Surface water - September 2022 - Q1

			ANZECC	EPL	S4	S5	S6	S 7	L8
A.n.	alytes	Units	2000 FW	Groundwater	MP4	MP5	MP6	MP7	MP8
An	aiytes	Ullits	95%	Trigger Levels	27/09/2022	27/09/2022	27/09/2022	27/09/2022	27/09/2022
			95%	Licence 6269					
	Dissolved Oxygen (Filtered)	mg/L		12.057	9.58	7.8	5.6	4.6	1.6
Field	EC (field)	μS/cm		1065	71	113	121	780	2560
l leid	pH (Field)	pH_Units		6.5 - 8.0	6.4	7.6	6.6	7.6	7.8
	Temp	°C			15.22	14.4	14.5	18	19.6
HM in water - dissolved	Iron (Filtered)	mg/L		1.84	0.57	0.49	0.47	0.56	6.6
HIVI III Water - dissolved	Manganese (Filtered)	mg/L	1.9	1.9	0.007	0.024	0.014	78	0.26
HM in water - total	Iron	mg/L		1.84	2.3	2.1	1.9	4.7	6.7
Tilvi ili Water - total	Manganese	mg/L	1.9	1.9	0.029	0.038	0.02	0.11	0.28
	Alkalinity (Carbonate)	mg/L			<5	<5	<5	<5	<5
	Alkalinity (Hydroxide) as CaCO3	mg/L			<5	<5	<5	<5	<5
	Alkalinity (total) as CaCO3	mg/L		12.283	12	15	16	85	540
	Alkalinity (Bicarbonate as	mg/L			12	15	16	85	540
	Calcium (Filtered)	mg/L		2.05	<0.5	2	2	16	27
Ion Balance	Chloride	mg/L		54.49	13	19	21	130	390
	Ionic Balance	%			-8	-6	-5	-6	-16
	Magnesium (Filtered)	mg/L		10.05	1	1	1	6.3	15
	Potassium (Filtered)	mg/L		2.282	0.9	2	2	14	48
	Sodium (Filtered)	mg/L		34	10	13	15	81	280
	Sulphate	mg/L		3.1	2	3	3	23	15
	Ammonia as N	mg/L	0.9	0.9	0.017	0.18	0.21	6.8	80
	Fluoride	mg/L			<0.1	<0.1	<0.1	<0.1	<0.1
Miscellaneous Inorganics	Nitrate (as N)	mg/L	0.7	0.7	0.01	0.23	0.29	3.9	3.3
	TOC	mg/L		33.1	16	18	20	38	180
	TSS	mg/L		33.415	280	460	44	450	23
Total Phenolics	Phenolics Total	mg/L	0.32	0.32	<0.05	<0.05	<0.05	<0.05	<0.05

Notes

Only EPL Trigger Level Exceedances highlighted

Q1 Summary 21/08/2023

Project: Kemspey Landfill Groundwater, Surface Water and Gas Monitoring

Table F3 - Field and Laboratory Results for Surface water - January 2023 - Q2

			ANZECC	EPL	S4	S5	S6	S7	L8
Λ	alutas	Lleita	2000 FW	Groundwater	MP4	MP5	MP6	MP7	MP8
An	alytes	Units	95%	Trigger Levels	10/01/2022	10/01/2022	10/01/2022	10/01/2022	10/01/2022
			95%	Licence 6269					
	Dissolved Oxygen (Filtered)	mg/L		12.057	-	4.77	-	9.92	3.46
Field	EC (field)	μS/cm		1065	-	450	-	2310	4840
riciu	pH (Field)	pH_Units		6.5 - 8.0	-	6.7	-	9.7	8.1
	Temp	°C			-	24.0	-	30.5	29.9
HM in water - dissolved	Iron (Filtered)	mg/L		1.84	-	0.57	-	<0.01	10
The in water dissolved	Manganese (Filtered)	mg/L	1.9	1.9	-	0.07	-	<0.005	0.46
HM in water - total	Iron	mg/L		1.84	-	9.8	-	790	11
HM in water - total	Manganese	mg/L	1.9	1.9	-	0.35	-	0.048	0.46
	Alkalinity (Carbonate)	mg/L			-	<5	-	69	<5
	Alkalinity (Hydroxide) as CaCO3	mg/L			-	<5	-	<5	<5
	Alkalinity (total) as CaCO3	mg/L		12.283	-	49	-	130	1100
	Alkalinity (Bicarbonate as	mg/L			-	49	-	60	1100
	Calcium (Filtered)	mg/L		2.05	-	7.8	-	41	51
Ion Balance	Chloride	mg/L		54.49	-	73	-	640	960
	Ionic Balance	%			-	-16	-	-4.0	-22
	Magnesium (Filtered)	mg/L		10.05	-	5.2	-	22	29
	Potassium (Filtered)	mg/L		2.282	-	7.9	-	29	100
	Sodium (Filtered)	mg/L		34	-	40	-	360	550
	Sulphate	mg/L		3.1	-	35	-	66	23
	Ammonia as N	mg/L	0.9	0.9	-	3.8	-	0.027	160
	Fluoride	mg/L			-	<0.1	-	0.2	0.2
Miscellaneous Inorganics	Nitrate (as N)	mg/L	0.7	0.7	-	0.26	-	0.54	0.10
	TOC	mg/L		33.1	-	28	-	59	190
	TSS	mg/L		33.415	-	1900	-	120	75
Total Phenolics	Phenolics Total	mg/L	0.32	0.32	-	< 0.05	-	< 0.05	< 0.05

Notes

Only EPL Trigger Level Exceedances highlighted

Q2 Summary 21/08/2023

Project: Kemspey Landfill Groundwater, Surface Water and Gas Monitoring

Table F4 - Field and Laboratory Results for Surface water - 30 March 2023 (Event Based Sampling)

				ANZECC	EPL	S7	L8
Λη	alytes	Units	PQL	2000 FW	Groundwater	MP7	MP8
All	idiytes	Ullits	PQL	95%	Trigger Levels	30/03/2023	30/03/2023
				95%	Licence 6269		
	Dissolved Oxygen	mg/L			12.057	4.4	3.02
	EC (field)	μS/cm			1065	6930	3070
Field	pH (Field)	pH_Units			6.5 - 8.0	9.4	8.3
	Temp	°C				21.8	24.4
	PID Headspace	ppm				<1	<1
HM in water - dissolved	Iron (Filtered)	mg/L	0.01		1.84	0.04	7.4
nivi ili water - dissoived	Manganese (Filtered)	mg/L	0.005	1.9	1.9	0.067	0.37
HM in water - total	Iron	mg/L	0.01		1.84	3.7	6.9
mivi in water - total	Manganese	mg/L	0.005	1.9	1.9	0.1	0.32
	Alkalinity (Carbonate)	mg/L	5			<5	<5
	Alkalinity (Hydroxide) as CaCO3	mg/L	5			<5	<5
	Alkalinity (total) as CaCO3	mg/L	5		12.283	39	530
	Alkalinity (Bicarbonate as	mg/L	5			39	530
	Calcium (Filtered)	mg/L	0.5		2.05	19	42
Ion Balance	Chloride	mg/L	1		54.49	99	640
	Ionic Balance	%				0	-13
	Magnesium (Filtered)	mg/L	0.5		10.05	10	97
	Potassium (Filtered)	mg/L	0.5		2.282	0	0
	Sodium (Filtered)	mg/L	0.5		34	0	0
	Sulphate	mg/L	1		3.1	0	0
	Ammonia as N	mg/L	0.005	0.9	0.9	65	380
	Fluoride	mg/L	0.1			0	0
Miscellaneous Inorganics	Nitrate (as N)	mg/L	0.005	0.7	0.7	46	46
	TOC	mg/L	1		33.1	0	0
	TSS	mg/L	5		33.415	0	0
Total Phenolics	Phenolics Total	mg/L	0.05	0.32	0.32	0	0

Notes

Only EPL Trigger Level Exceedances highlighted

Event Based Summary 21/08/2023

Project: Kemspey Landfill Groundwater, Surface Water and Gas Monitoring

Douglas Partners

Geotechnics | Environment | Groundwater

Table F5 - Field and Laboratory Results for Groundwater - April 2023 - Q3

			ANZECC	EPL	BH1	BH2	BH3	BH4	BH1-2
۸.	nalyte	Units	2000 FW	Groundwater	MP1	MP2	MP3	MP12	MP14
Ai	ialyte	Units		Trigger Levels	-	27/04/2023	27/04/2023	27/04/2023	27/04/2023
			95%	Licence 6269					
	Dissolved Oxygen (Filtered)	mg/L			•	22.20	6.10	95.00	32.10
	EC (Field)	μS/cm		1065	-	916.00	1120.00	1110.00	900.00
Field	pH (Field)	pH_Units		6.5 - 8.0	-	6.41	5.75	5.35	5.60
	PID (Top of Well)	ppm			<1	<1	<1	<1	<1
	Temp	°C			•	19.31	21.00	23.50	19.33
Ion Balance	Magnesium (Filtered)	mg/L		10.05	-	17	40	31	18
Missollaneous Inorganies	Ammonia as N	mg/L	0.9	0.9	-	0.067	0.074	0.095	0.024
Miscellaneous Inorganics	Nitrate (as N)	mg/L	0.7	0.7	-	<0.005	<0.005	<0.005	0.007

Notes

Only EPL Trigger Levels exceedances highlighted

Table F6 - Field and Laboratory Results for Surface water - April 2023 - Q3

			ANZECC	EPL	S4	S5	S6	S 7	L8
A.,	alutas	Units	2000 FW	Groundwater	MP4	MP5	MP6	MP7	MP8
All	alytes	Units	95%	Trigger Levels	26/04/2023	26/04/2023	26/04/2023	26/04/2023	26/04/2023
			95%	Licence 6269					
	Dissolved Oxygen (Filtered)	mg/L		12.057	2.55	1.47	1.77	7.77	8.46
Field	EC (field)	μS/cm		1065	71	415	361	402	1000
Fleid	pH (Field)	pH_Units		6.5 - 8.0	5.4	6.2	6.2	8.8	6.8
	Temp	°C			18.81	18.76	19	22.45	19.4
HM in water - dissolved	Iron (Filtered)	mg/L		1.84	0.42	0.26	0.26	0.02	7.2
Thir in water - dissolved	Manganese (Filtered)	mg/L	1.9	1.9	0.018	0.083	0.042	12	0.39
HM in water - total	Iron	mg/L		1.84	1.2	2.1	1.4	0.86	7.4
Third in water - total	Manganese	mg/L	1.9	1.9	0.029	0.12	0.057	0.14	0.48
	Alkalinity (Carbonate)	mg/L			<5	<5	<5	<5	<5
	Alkalinity (Hydroxide) as CaCO3	mg/L			<5	<5	<5	<5	<5
	Alkalinity (total) as CaCO3	mg/L		12.283	7	56	25	62	790
	Alkalinity (Bicarbonate as	mg/L			7	56	25	62	790
	Calcium (Filtered)	mg/L		2.05	1	24	15	28	52
Ion Balance	Chloride	mg/L		54.49	29	170	130	180	820
	Ionic Balance	%			-4.0	-5.0	-5.0	-4.0	-15
	Magnesium (Filtered)	mg/L		10.05	2	9.2	8.5	9.6	29
	Potassium (Filtered)	mg/L		2.282	1	14	9.5	15	110
	Sodium (Filtered)	mg/L		34	14	89	62	94	490
	Sulphate	mg/L		3.1	<1	46	30	48	42
	Ammonia as N	mg/L	0.9	0.9	0.017	0.10	0.006	0.042	94
	Fluoride	mg/L			<0.1	<0.1	<0.1	<0.1	0.1
Miscellaneous Inorganics	Nitrate (as N)	mg/L	0.7	0.7	0.098	0.36	0.065	0.63	0.058
	TOC	mg/L		33.1	23	17	14	16	150
	TSS	mg/L		33.415	7	19	17	56	38
Total Phenolics	Phenolics Total	mg/L	0.32	0.32	<0.05	< 0.05	<0.05	< 0.05	<0.05

Notes

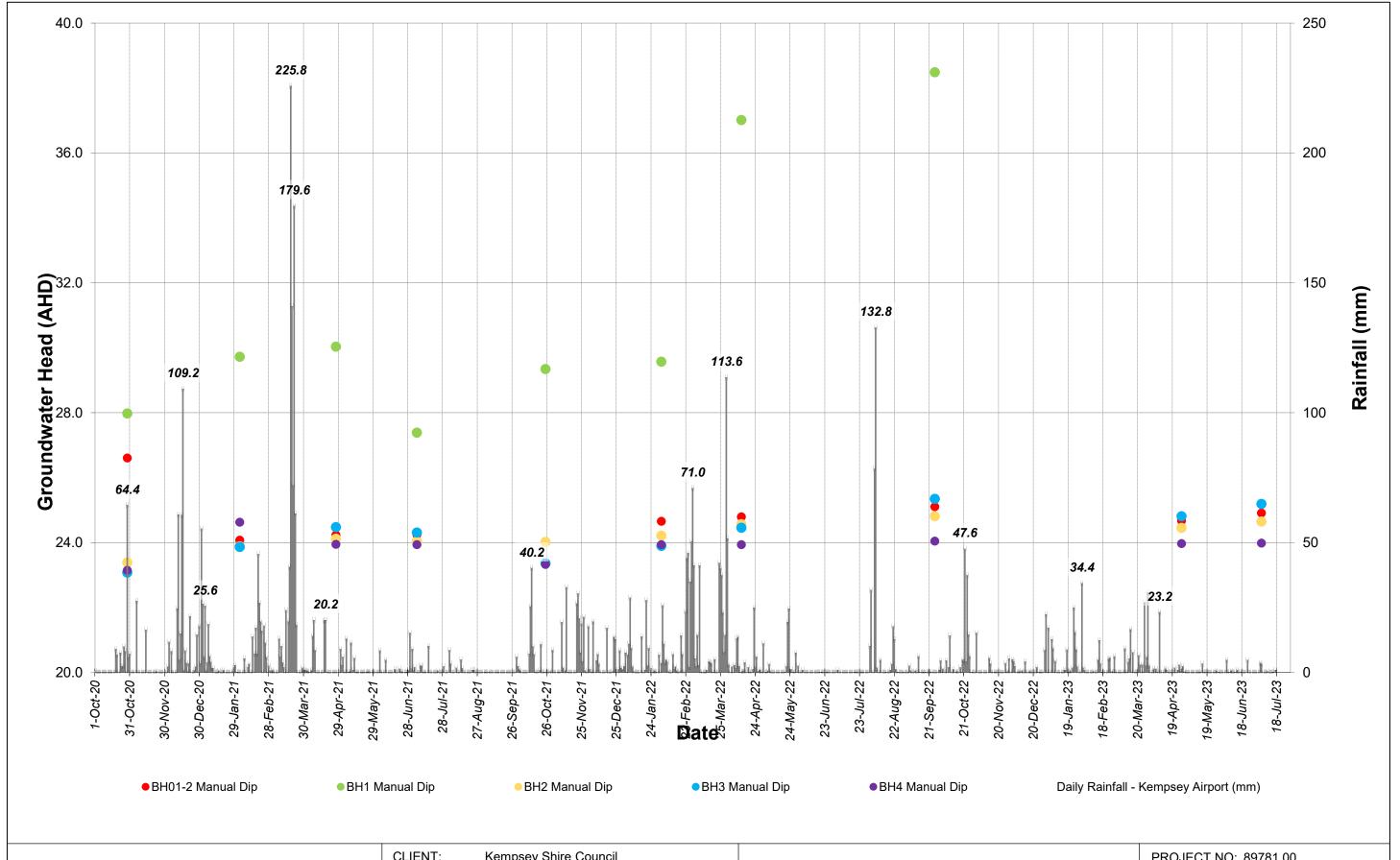
Only EPL Trigger Level Exceedances highlighted

Q3 Summary 21/08/2023

Project: Kemspey Landfill Groundwater, Surface Water and Gas Monitoring

Table F7 - Field and Laboratory Results for Surface water - July 2023 - Q4

			ANZECC	EPL	S4	S5	S6	S7	L8
Δ.,	Units	2000 FW	Groundwater	MP4	MP5	MP6	MP7	MP8	
An	alytes	Units	95%	Trigger Levels	5/07/2023	5/07/2023	5/07/2023	5/07/2023	5/07/2023
			95%	Licence 6269					
	Dissolved Oxygen (Filtered)	mg/L		12.057	-	0.901	0.395	0.916	3.25
Field	EC (field)	μS/cm		1065	-	1410	617	1430	5130
rieid	pH (Field)	pH_Units		6.5 - 8.0	-	6.6	6.8	7.1	8.05
	Temp	°C			-	12.25	12.56	11.2	13.31
HM in water - dissolved	Iron (Filtered)	mg/L		1.84	-	0.26	0.67	0.02	8.2
Tilvi ili water - dissolved	Manganese (Filtered)	mg/L	1.9	1.9	-	0.22	0.18	0.2	0.53
HM in water - total	Iron	mg/L		1.84	-	1.4	2.4	5.2	9.7
mivi m water - total	Manganese	mg/L	1.9	1.9	-	0.26	0.24	0.26	0.65
	Alkalinity (Carbonate)	mg/L			-	<5	<5	<5	<5
	Alkalinity (Hydroxide) as CaCO3	mg/L			-	<5	<5	<5	<5
	Alkalinity (total) as CaCO3	mg/L		12.283	-	53	24	50	1200
	Alkalinity (Bicarbonate as	mg/L			-	53	24	50	1200
	Calcium (Filtered)	mg/L		2.05	-	32	12	41	55
Ion Balance	Chloride	mg/L		54.49	-	400	170	300	1000
	Ionic Balance	%			-	-3	-6	4	-22
	Magnesium (Filtered)	mg/L		10.05	-	19	8.1	22	33
	Potassium (Filtered)	mg/L		2.282	-	18	8.9	23	150
	Sodium (Filtered)	mg/L		34	-	210	76	190	570
	Sulphate	mg/L		3.1	-	44	11	120	15
	Ammonia as N	mg/L	0.9	0.9	-	1.4	0.017	0.91	120
	Fluoride	mg/L			-	<0.1	<0.1	0.1	0.2
Miscellaneous Inorganics	Nitrate (as N)	mg/L	0.7	0.7	-	0.2	<0.005	12	0.37
	TOC	mg/L		33.1	-	36	18	16	200
	TSS	mg/L		33.415	-	23	16	410	66
Total Phenolics	Phenolics Total	mg/L	0.32	0.32	-	< 0.05	< 0.05	<0.05	< 0.05

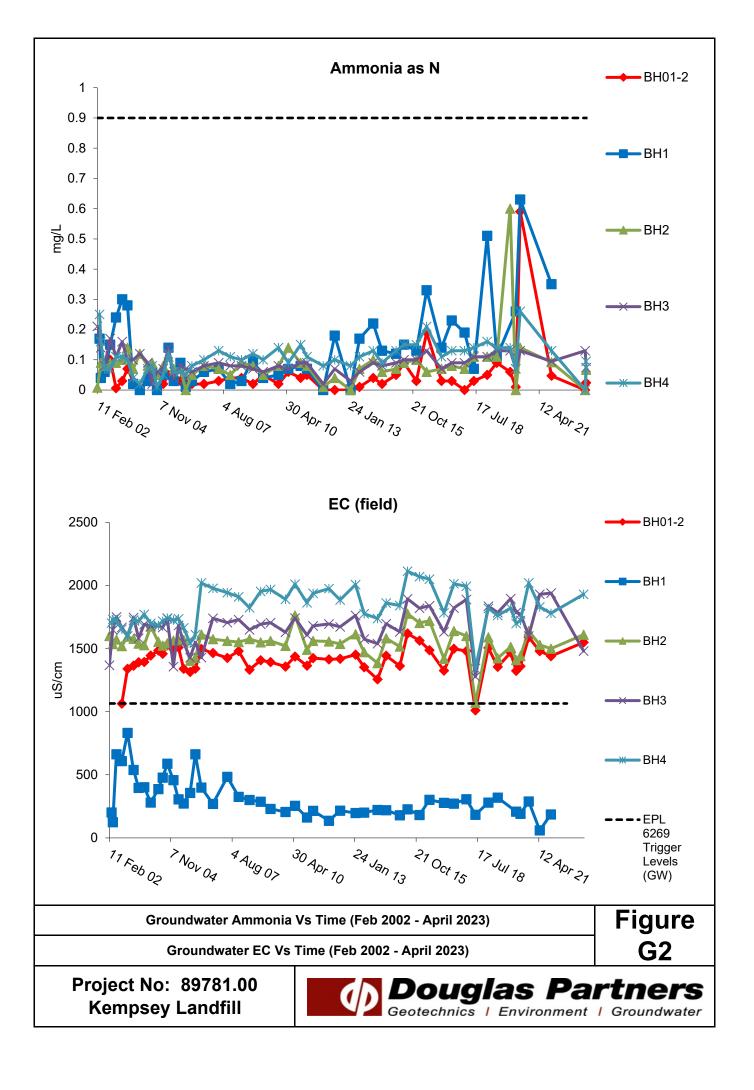

Notes

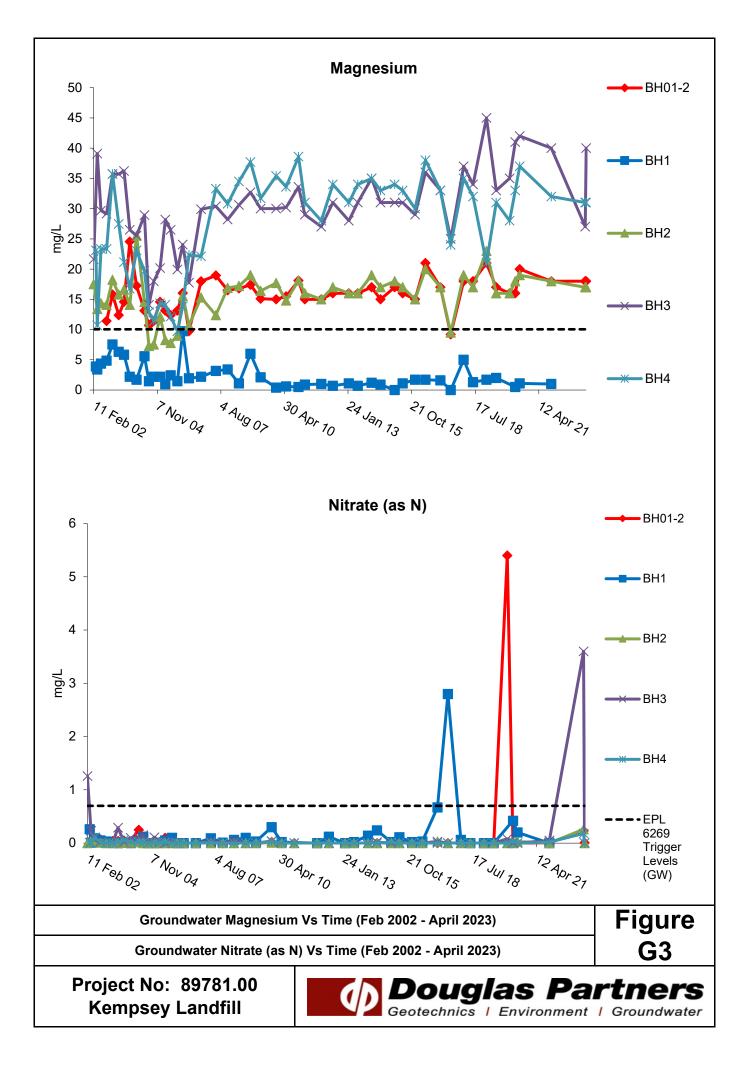
Only EPL Trigger Level Exceedances highlighted

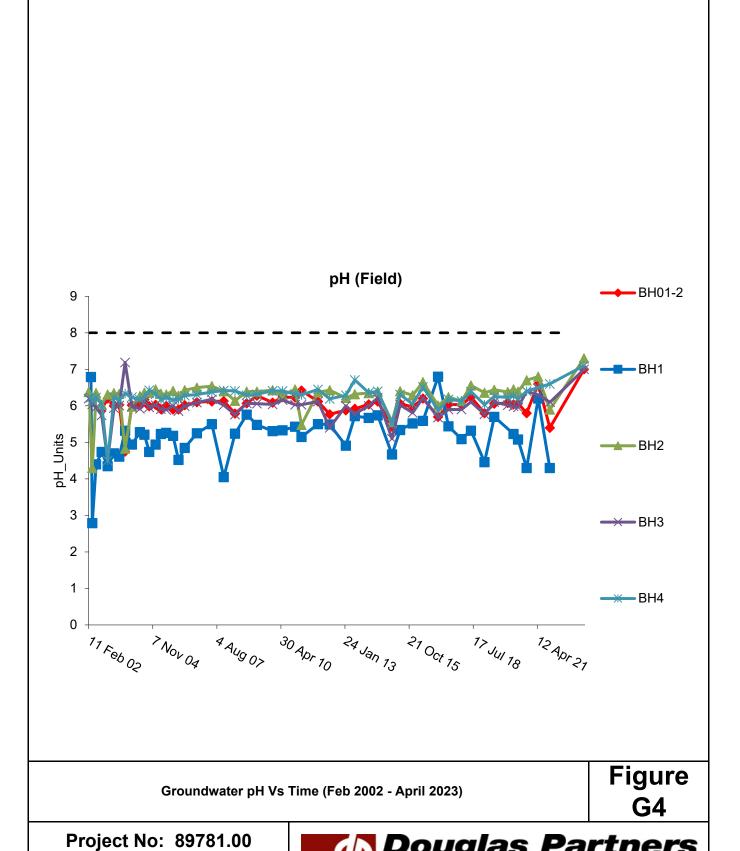
Q4 Summary 21/08/2023

Appendix G

Appendix G: Graphed Historical Data
Figure G1: Rainfall Data and Groundwater Levels 2020 – 2023
Figure G2: Groundwater Chemistry (Ammonia and EC) vs Time
Figure G3: Groundwater Chemistry (Magnesium and Nitrate) vs Time
Figure G4: Groundwater Chemistry (pH) vs Time
Figure G5: Surface Water Chemistry (Chloride and EC) vs Time
Figure G6: Surface Water Chemistry (Iron and Magnesium) vs Time
Figure G7: Surface Water Chemistry (Manganese and Nitrate) vs Time
Figure G8: Surface Water Chemistry (pH and Potassium) vs Time
Figure G9: Surface Water Chemistry (Sodium and Sulfate) vs Time
Figure G10: Surface Water Chemistry (TSS and TOC) vs Time

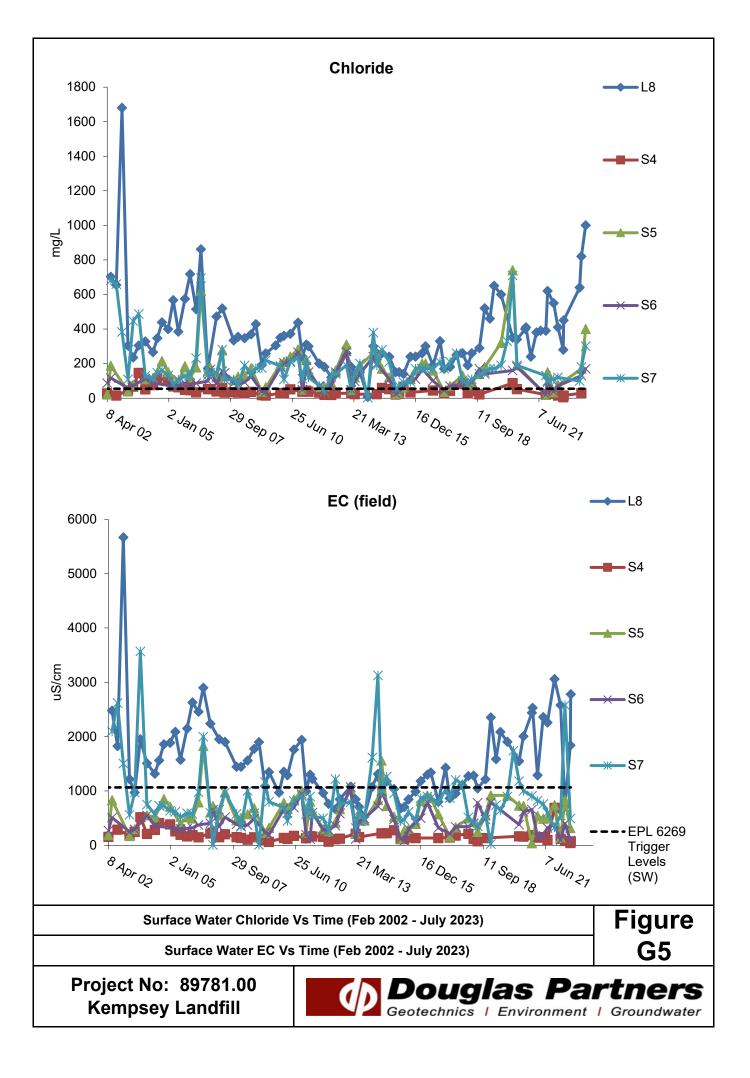


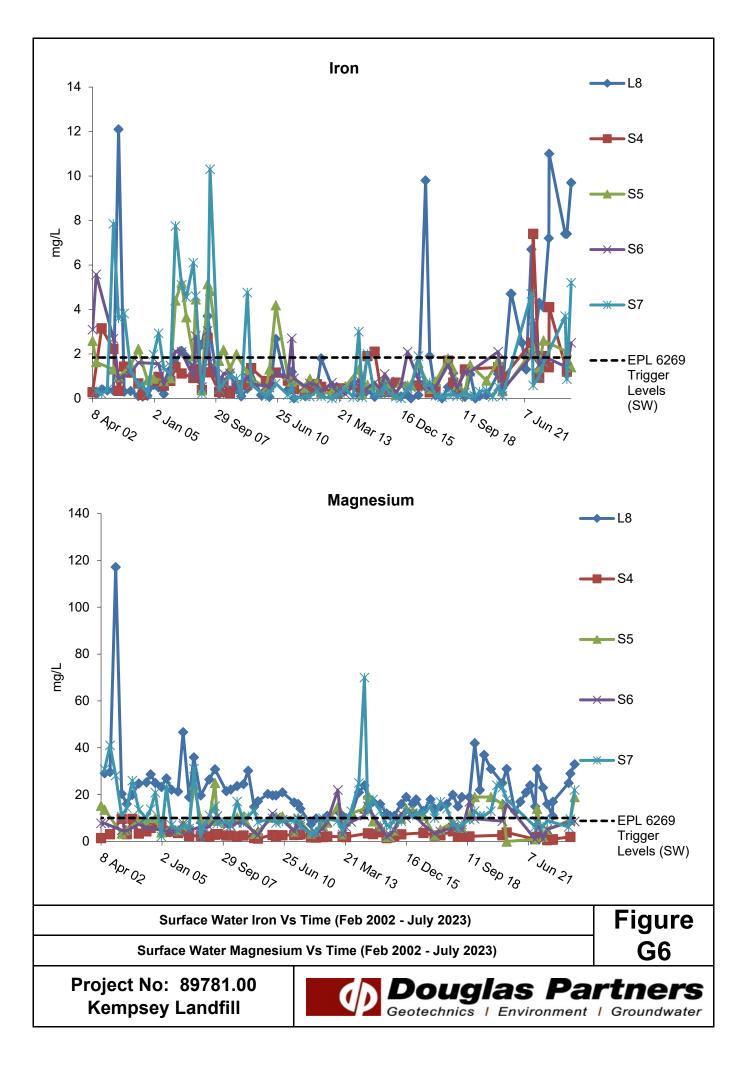

dh	Douglas Partne	rs
N/	Geotechnics Environment Ground	water

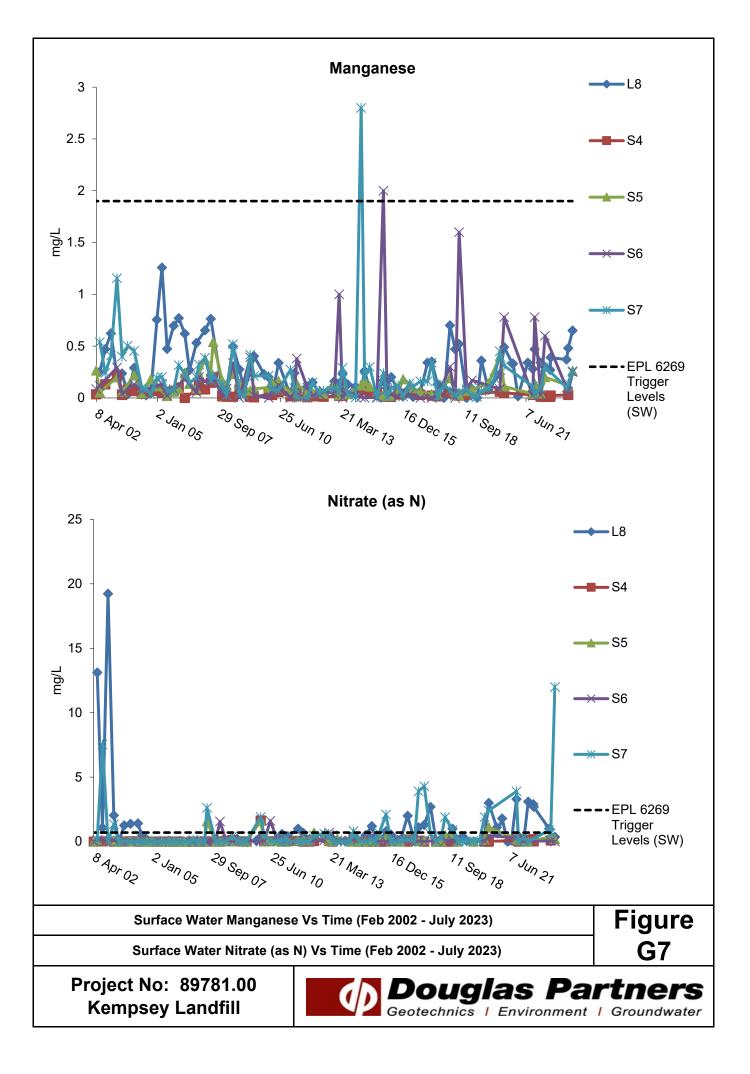

CLIENT:	Kempsey Shire Council						
OFFICE:	Port Macquarie	DRAWN BY:	SBK				
SCALE:	N/A	DATE:	25 July 2023				

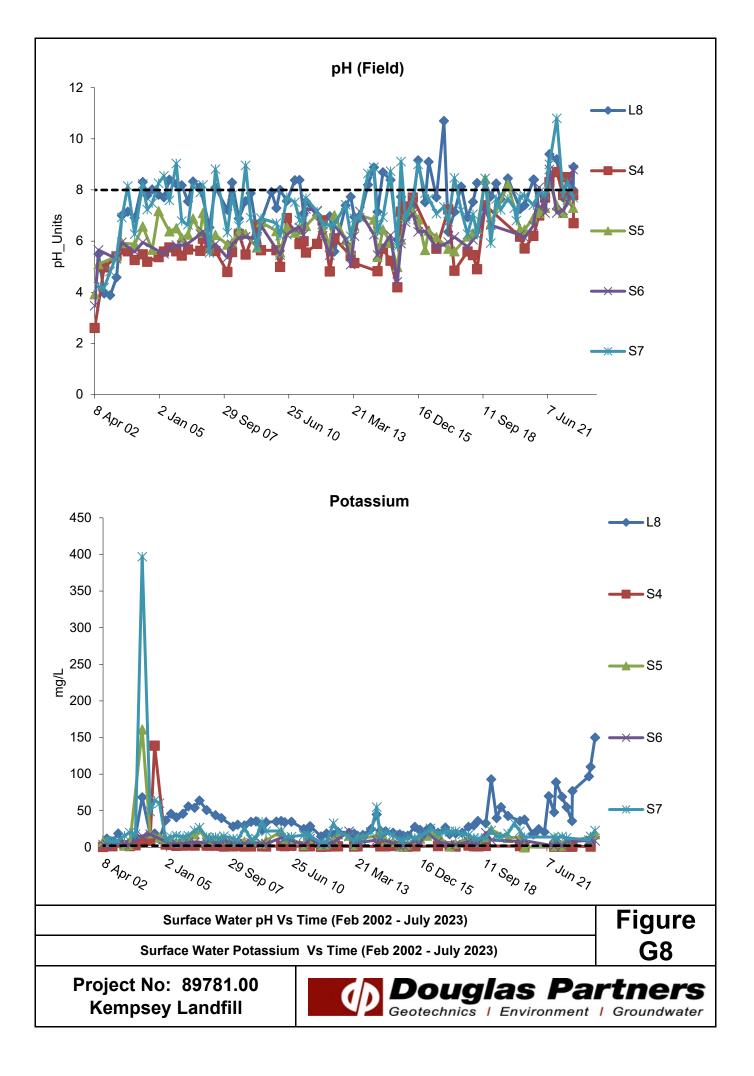
Groundwater Level vs Rainfall (2020 to 2023) Kempsey Landfill 538 Crescent Head Road, Kemspey

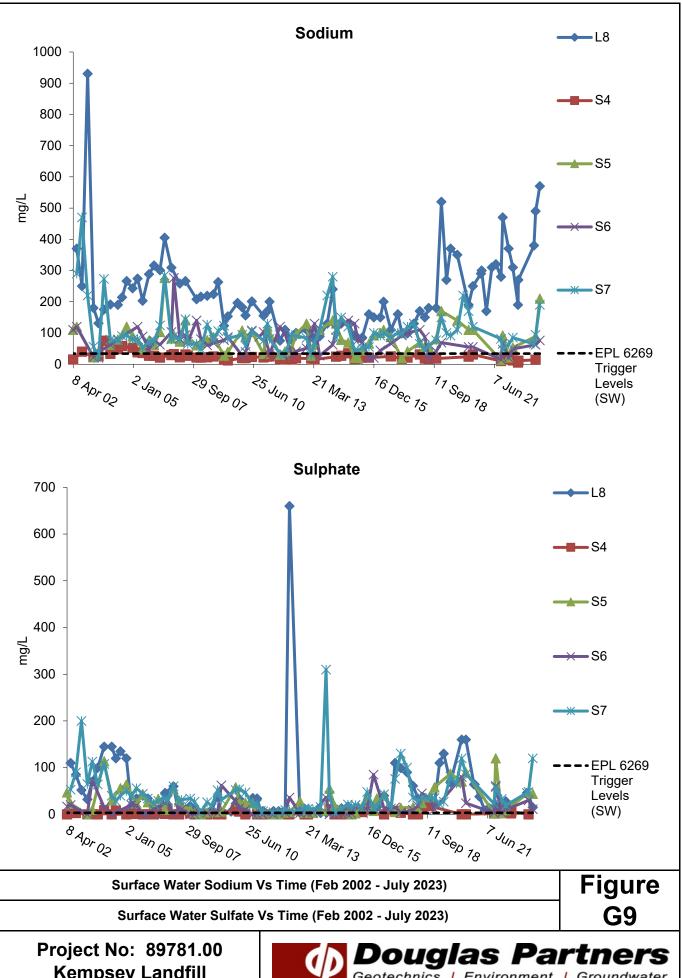
PROJECT NO	: 89781.00
FIGURE NO:	G1
REVISION:	0

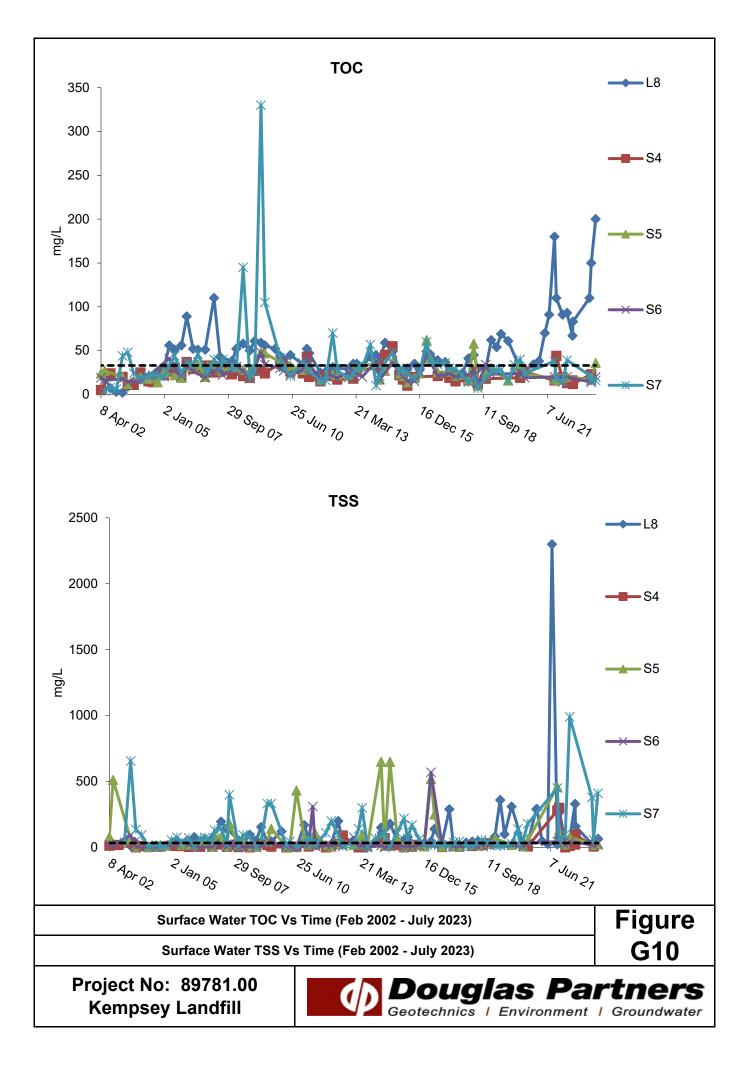







Kempsey Landfill


Douglas PartnersGeotechnics | Environment | Groundwater



Kempsey Landfill

Appendix H

- Appendix H: Tabulated Annual Return Data
- Table H1: Annual Return Reporting Values for Monitoring Point 1 (BH1) (2022 to 2023)
- Table H2: Annual Return Reporting Values for Monitoring Point 2 (BH2) (2022 to 2023)
- Table H3: Annual Return Reporting Values for Monitoring Point 3 (BH3) (2022 to 2023)
 - Table H4: Annual Return Reporting Values for Monitoring Point 4 (S4) (2022 to 2023)
 - Table H5: Annual Return Reporting Values for Monitoring Point 5 (S5) (2022 to 2023)
 - Table H6: Annual Return Reporting Values for Monitoring Point 6 (S6) (2022 to 2023)
 - Table H7: Annual Return Reporting Values for Monitoring Point 7 (S7) (2022 to 2023)
 - Table H8: Annual Return Reporting Values for Monitoring Point 8 (L8) (2022 to 2023)
 - Table H9: Annual Return Reporting Values for Monitoring Point 9 (Methane Buildings) (2022 to 2023)
 - Table H10: Annual Return Reporting Values for Monitoring Point 10 (Methane Surface) (2022 to 2023)
 - Table H11: Annual Return Reporting Values for Monitoring Point 11 (Methane in Groundwater Bores) (2022 to 2023)
 - Table H12: Annual Return Reporting Values for Monitoring Point 12 (BH4) (2022 to 2023)
 - Table H13: Annual Return Reporting Values for Monitoring Point 14 (BH01-2) (2022 to 2023)

Table H1: Annual Return Reporting Values for Monitoring Point 1 (BH1) (2022 to 2023)

Analyte	Units		Annual R	eturn Reporting Values	•	Comments
Allalyte	Offics	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Ammonia	mg/l	0	-	-	1	Within historical data and below trigger level
Conductivity	μS/cm	0	-	-	-	Within historical data and below trigger level
Magnesium	mg/l	0	-	-	1	Within historical data and below trigger level
Nitrate	mg/l	0	-	-	-	Within historical data and below trigger level
рН	рН	0	-	-	-	Fluctuating as per historical data
Standing Water Level	AHD	2	38.485	44.325	50.165	Water level has increased and is within historical data
Temperature	°C	0	-	-	-	Consistent with historical data

Table H2: Annual Return Reporting Values for Monitoring Point 2 (BH2) (2022 to 2023)

Analyte	Units		Annual R	eturn Reporting Values	i	Comments
Analyte	Units	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Ammonia	mg/l	1	0.077	0.077	0.077	Decreased and are within histoical data and trigger levels
Conductivity	μS/cm	2	916	1278	1640	Consistent with hisortical data and exceed trigger levels
Magnesium	mg/l	1	15.0	15.0	15.0	Consistent with hisortical data and exceed trigger levels
Nitrate	mg/l	1	0.04	0.040	0.040	Slightly increased, witihn historical data and below trigger levels
рН	pН	2	6.4	6.6	6.7	Slightly increased, within trigger levels
Standing Water Level	AHD	3	24.455	24.640	24.816	Slighty increased and within historical data
Temperature	°C	2	18.10	18.71	19.31	Consistent with historical data

Table H3: Annual Return Reporting Values for Monitoring Point 3 (BH3) (2022 to 2023)

Analyte	Unite	Units Annual Return Reporting Values				Comments
Analyte	Units	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Ammonia	mg/l	1	0.090	0.090	0.090	Within historical data and below trigger level
Conductivity	μS/cm	2	1120	1575	2030	Slightly decreased, below historical data and within trigger levels
Magnesium	mg/l	1	33.0	33.0	33.0	Within historical data and above trigger level
Nitrate	mg/l	1	0.01	0.010	0.010	Elevated (possibe spurious), exceed trigger level
рН	рН	2	5.8	5.8	5.9	Slightly increased, within trigger levels
Standing Water Level	AHD	3	24.816	25.118	25.349	Slightly increased, within historical data
Temperature	°C	2	20.90	20.95	21.00	Consistent with historical data

Table H4: Annual Return Reporting Values for Monitoring Point 4 (S4) (2022 to 2023)

Analyta	Units	Annual Return Reporting Values				Comments
Analyte	Units	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Alkalinity (As Calcium Carbonate)	mg/l	1	12.0	12	12.0	Average slightly exceeding trigger level
Ammonia	mg/l	1	0.017	0.017	0.017	Within historical data and below trigger level
Calcium	mg/l	1	0.5	0.5	0.5	Within historical data and below trigger level
Chloride	mg/l	1	13	13	13	Within historical data and below trigger level
Conductivity	μS/cm	2	71	71	71	Within historical data and below trigger level
Dissolved Oxygen	mg/l	2	2.55	6.07	9.58	Slightly increasing, average above trigger level
Fluoride	mg/l	1	0.1	0.1	0.1	Within historical data and below trigger level
Iron (Filtered)	mg/l	2	0.42	0.50	0.57	Elevated result for Q1, within historical data
Magnesium	mg/l	1	1.0	1.0	1.0	Within historical data and below trigger level
Manganese (Filtered)	mg/l	2	0.007	0.013	0.018	Within historical data and below trigger level
Nitrate	mg/l	1	0.01	0.01	0.010	Within historical data and below trigger level
рН	рН	2	5.4	5.9	6.4	Slightly increasing, average above trigger level
Potassium	mg/l	1	0.9	0.9	0.9	Within historical data and below trigger level
Sodium	mg/l	1	10	10.0	10.0	Within historical data and below trigger level
Sulfate	mg/l	2	1	1.5	2	Within historical data and below trigger level
Temperature	°C	2	15.22	17.02	18.81	Consistent with historical data
Total Organic Carbon	mg/l	1	16	16	16	Within historical data and average below trigger level
Total Phenolics	mg/l	2	0.05	0.05	0.05	Within historical data and below trigger level
Total Suspended Solids	mg/l	1	280	280	280	Elevated result for Q1, within historical data for Q3 and Q4

Table H5: Annual Return Reporting Values for Monitoring Point 5 (S5) (2022 to 2023)

Analista	Unite	Units Annual Return Reporting Values				Comments
Analyte	Units	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Alkalinity (As Calcium Carbonate)	mg/l	2	15.0	34.0	53.0	Average exceeding trigger level
Ammonia	mg/l	2	0.18	0.790	1.400	Within historical data, Q3 and Q4 exceed trigger level
Calcium	mg/l	2	2.0	17.0	32.0	Within historical data, Q1, Q3 and Q4 exceeds trigger level
Chloride	mg/l	2	19	210	400	Within historical data, Q1 and Q3 exceeds trigger level
Conductivity	μS/cm	4	113	597	1410	Within historical data and below trigger level
Dissolved Oxygen	mg/l	4	0.90	3.74	7.80	Within historical data, Q4 exceeds trigger level
Fluoride	mg/l	3	0.1	0.1	0.1	Within historical data and below trigger level
Iron (Filtered)	mg/l	4	0.00	0.25	0.49	Within historical data and below trigger level
Magnesium	mg/l	2	1.0	10.0	19.0	Within historical data, Q1 exceeds trigger level
Manganese (Filtered)	mg/l	4	0.000	0.082	0.220	Within historical data and below trigger level
Nitrate	mg/l	2	0.2	0.215	0.230	Within historical data and below trigger level
рН	рН	4	6.2	6.8	7.6	Within historical data
Potassium	mg/l	2	2.0	10.0	18.0	Within historical data, Q1, Q3 and Q4 exceeds trigger level
Sodium	mg/l	2	13.0	111.5	210.0	Within historical data, Q1 and Q3 exceeds trigger level
Sulfate	mg/l	2	3	23.5	44	Average exceeding trigger level
Temperature	°C	4	12.25	17.36	24.02	Consistent with historical data
Total Organic Carbon	mg/l	2	18	27	36	Within historical data and below trigger level
Total Phenolics	mg/l	4	0.05	0.05	0.05	Within historical data and below trigger level
Total Suspended Solids	mg/l	2	23	242	460	Within historical data, Q1, Q3 and Q4 exceeds trigger level

Table H6: Annual Return Reporting Values for Monitoring Point 6 (S6) (2022 to 2023)

Analysta	Units		Annual R	eturn Reporting Values		Comments
Analyte	Units	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Alkalinity (As Calcium Carbonate)	mg/l	2	16.0	20.0	24.0	Within historical data, Q1, Q2 and Q3 exceed trigger level
Ammonia	mg/l	2	0.017	0.114	0.210	Within historical data, Q3 exceeds trigger level
Calcium	mg/l	2	2.0	7.0	12.0	Within historical data, Q1 and Q3 exceeds trigger level
Cholride	mg/l	2	21	95.5	170	Within historical data, Q1 and Q3 exceeds trigger level
Conductivity	μS/cm	3	121	366	617	Within historical data and below trigger level
Dissolved Oxygen	mg/l	3	0.40	2.59	5.60	Within historical data and below trigger level
Fluoride	mg/l	2	0.1	0.1	0.1	Within historical data and below trigger level
Iron (Filtered)	mg/l	3	0.26	0.47	0.67	Within historical data
Magnesium	mg/l	2	1.0	4.6	8.1	Within historical data and below trigger level
Manganese (Filtered)	mg/l	3	0.014	0.079	0.180	Within historical data and below trigger level
Nitrate	mg/l	2	0.005	0.148	0.290	Within historical data and below trigger level
рН	рН	3	6.2	6.5	6.8	Within historical data, Q4 exceeds trigger level
Potassium	mg/l	2	2.0	5.5	8.9	Within historical data, Q1, Q3 and Q4 exceeds trigger level
Sodium	mg/l	2	15	45.5	76.0	Within historical data, Q1 and Q3 exceeds trigger level
Sulfate	mg/l	2	3	7	11	Within historical data, Q1 and Q3 exceeds trigger level
Temperature	°C	3	12.56	15.35	19.00	Consistent with historical data
Total Organic Carbon	mg/l	2	18	19	20	Within historical data and below trigger level
Total Phenolics	mg/l	3	0.05	0.05	0.05	Within historical data and below trigger level
Total Suspended Solids	mg/l	2	16	30	44	Within historical data, Q1 and Q4 exceeds trigger level

Table H7: Annual Return Reporting Values for Monitoring Point 7 (S7) (2022 to 2023)

Analysta	Units		Annual R	eturn Reporting Values		Comments
Analyte	Qty	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Alkalinity (As Calcium Carbonate)	mg/l	3	39.0	58.0	85.0	Within historical data and exceeds trigger level
Ammonia	mg/l	3	0.510	2.740	6.800	Within historical data, Q3 and Q4 exceeds trigger level
Calcium	mg/l	3	16.0	25.3	41.0	Within historical data and exceeds trigger level
Chloride	mg/l	3	99	176	300	Within historical data and exceeds trigger level
Conductivity	μS/cm	5	402	1139	2310	Within historical data, Q3 elevated and exceeds trigger level
Dissolved Oxygen	mg/l	5	0.92	5.86	9.92	Within historical data, Q2, Q3 and Q4 exceeds trigger level
Fluoride	mg/l	3	0.1	0.1	0.1	Within historical data and below trigger level
Iron (Filtered)	mg/l	4	0.02	10.15	40.00	Within historical data and within trigger level
Magnesium	mg/l	3	6.2	11.5	22.0	Within historical data
Manganese (Filtered)	mg/l	4	0.012	16.823	67.000	Within historical data and below trigger level
Nitrate	mg/l	3	0.890	5.597	12.000	Within historical data
рН	рН	5	7.1	8.3	9.7	Within historical data, Q1 and Q3 exceeds trigger level
Potassium	mg/l	3	10.0	15.7	23.0	Within historical data and exceeds trigger level
Sodium	mg/l	3	65.0	112.0	190.0	Within historical data and exceeds trigger level
Sulfate	mg/l	3	23	63	120	Within historical data and exceeds trigger level
Temperature	°C	5	11.20	20.85	30.52	Consistent with historical data
Total Organic Carbon	mg/l	3	16	25	38	Within historical data, Q3 and Q4 exceeds trigger level
Total Phenolics	mg/l	5	0.05	0.05	0.05	Within historical data and below trigger level
Total Suspended Solids	mg/l	3	380	413	450	Q1 and Q2 within historical data, exceeds trigger level and Q3 and Q4 elevated

Table H8: Annual Return Reporting Values for Monitoring Point 8 (L8) (2022 to 2023)

Analista	Unite	Jnits Annual Return Reporting Values				Comments
Analyte	Units	Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Alkalinity (As Calcium Carbonate)	mg/l	3	530.0	756.7	1200.0	Within historical data and exceeds trigger level
Ammonia	mg/l	3	71.000	90.333	120.000	Within historical data and exceeds trigger level
Calcium	mg/l	3	27.0	41.3	55.0	Within historical data and exceeds trigger level
Chloride	mg/l	3	390	677	1000	Within historical data and exceeds trigger level
Conductivity	μS/cm	5	1000	3320	5130	Within historical data, Q1, Q2 and Q4 exceeds trigger level
Dissolved Oxygen	mg/l	5	1.60	3.96	8.46	Within historical data, Q2 and Q4 exceeds trigger level
Fluoride	mg/l	3	0.1	0.1	0.2	Within historical data and below trigger level
Iron (Filtered)	mg/l	5	0.01	1484.40	7400.00	Within historical data, Q2, Q3 and Q4 exceeds trigger level
Magnesium	mg/l	3	15.0	24.3	33.0	Within historical data and exceeds trigger level
Manganese (Filtered)	mg/l	5	0.000	74.236	370.000	Within historical data and below trigger level
Nitrate	mg/l	3	0.370	1.557	3.300	Within historical data and Q3 and Q4 exceeds trigger level
рН	рН	5	6.8	7.8	8.3	Within historical data, Q1 and Q4 exceeds trigger level
Potassium	mg/l	3	48.0	98.3	150.0	Within historical data and exceeds trigger level
Sodium	mg/l	3	280.0	410.0	570.0	Within historical data and exceeds trigger level
Sulfate	mg/l	3	15	25	46	Within historical data and exceeds trigger level
Temperature	°C	5	13.31	21.32	29.88	Consistent with historical data
Total Organic Carbon	mg/l	3	110	163	200	Within historical data and exceeds trigger level
Total Phenolics	mg/l	5	0.05	0.05	0.05	Within historical data and below trigger level
Total Suspended Solids	mg/l	3	23	39	66	Within historical data, Q1, Q3 and Q4 exceeds trigger level

Table H9: Annual Return Reporting Values for Monitoring Point 9 (Methane Buildings) (2022 to 2023)

ſ	Analyte	Units		Annual R	eturn Reporting Values	5	Comments
			Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	
	Methane	%	100	0.00001	0.000003	0.000017	No exceedances recorded

Table H10: Annual Return Reporting Values for Monitoring Point 10 (Methane Surface) (2022 to 2023)

Analyte	Units	Annual Return Reporting Values				Comments
		Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	Comments
Methane	%	462	0.00001	0.000061	0.010099	Total of 5 localised exceedances (1 in Q1, 1 in Q3 and 3 in Q4)

Table H11: Annual Return Reporting Values for Monitoring Point 11 (Methane in Groundwater Bores) (2022 to 2023)

Analyte	Units		Annual R	eturn Reporting Values	•	Comments
Analyte		Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	
Methane	%	15	0.000000	0.000000	0.000000	No exceedances recorded

Table H12: Annual Return Reporting Values for Monitoring Point 12 (BH4) (2022 to 2023)

Analyte	Units		Annual R	eturn Reporting Values		Comments
Analyte		Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	
Ammonia	mg/l	1	0.110	0.110	0.110	Slightly decreased, within historical data and below trigger level
Conductivity	μS/cm	2	1110	1555	2000	Slightly increased, within historical data and exceed trigger level
Magnesium	mg/l	1	29.0	29.0	29.0	Slightly decreased, within historical data and exceed trigger level
Nitrate	mg/l	1	0.01	0.01	0.01	Slightly increased, within historical data and below trigger level
рН	рН	2	5.4	5.8	6.3	Slightly increased, below tigger level
Standing Water Level	AHD	3	23.973	24.003	24.048	Slightly increased, within historical data
Temperature	°C	2	19.00	21.25	23.50	Consistent with historical data

Table H13: Annual Return Reporting Values for Monitoring Point 14 (BH01-2) (2022 to 2023)

Analyte	Units		Annual R	eturn Reporting Values		Comments
Analyte		Qty	Lowest Sample Value	Mean of Sample	Highest Sample Value	
Ammonia	mg/l	1	0.031	0.031	0.031	Slightly decreased, within historical data and below trigger level
Conductivity	μS/cm	2	900	990	1080	Slightly increased, within historical data and exceed trigger level
Magnesium	mg/l	1	17.0	17.0	17.0	Slightly decreased, within historical data and exceed trigger level
Nitrate	mg/l	1	0.03	0.03	0.03	Slightly increased, within historical data and below trigger level
рН	рН	2	5.3	5.5	5.6	Slightly increased, below tigger level
Standing Water Level	AHD	3	24.676	24.899	25.107	Slightly increased, within historical data
Temperature	°C	2	18.00	18.67	19.33	Consistent with historical data